
30 hidden gems in Python 3

Opensource.com

Three cool features from each of the
first ten versions of Python 3

http://www.opensource.com

OPENSOURCE.COM .

2 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: opensource.com/story

Email us: open@opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
http://opensource.com
http://opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 3

. ABOUT THE AUTHOR

MOSHE ZADKA has been involved in the Linux community since
1998, helping in Linux "installation parties". He

has been programming Python since 1999, and has
contributed to the core Python interpreter. Moshe
has been a DevOps/SRE since before those
terms existed, caring deeply about software
reliability, build reproducibility and other
such things. He has worked in companies
as small as three people and as big as
tens of thousands -- usually some place
around where software meets system
administration.
Follow me at @moshezadka

MOSHE ZADKA

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://twitter.com/moshezadka

CONTENTS .

4 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

CHAPTERS

3 features that debuted in Python 3.0 you should use now 6

3 features released in Python 3.1 you should use in 2021 8

3 Python 3.2 features that are still relevant today 9

What Python 3.3 did to improve exception handling 11
in your code

Looking back at what Python 3.4 did for enum 13

Convenient matrices and other improvements Python 3.5 15
brought us

Are you using this magic method for filesystems from 17
Python 3.6?

Slice infinite generators with this Python 3.7 feature 19

Make your API better with this positional trick from 20
Python 3.8

How Python 3.9 fixed decorators and improved dictionaries 21

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. INTRODUCTION

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 5

THE RELEASE OF PYTHON 3, a backwards incompatible
version of Python, was a

news-making event. As Python rose in popularity, every version since has also been an event.

From async to the so-called “walrus operator” (the := looks like walrus eyes and teeth),
Pythonistas have been atwitter before, after, and during every single major release.

But what about the features that didn’t make the news?

In each one of those releases, there are hidden gems. Small improvements to the standard
library. A little improved ergonomics in the interpreter. Maybe even a new operator, one that
is not important to be on the front page.

Python 3 has been out since 2008, and it has had ten minor releases between 3.0 and 3.9.
Each of those releases packed more features than most people know. Some of those are
still little known.

The major challenge is not to find three cool things first released in a new version of Py-
thon. It’s not even to find three cool things that few people use. The challenge is how to pick
just three from all the delightful options.

Enjoy these curated picks. Here are 30 features, three from each of the first ten versions of
Python 3, that you might want to start using.

Introduction

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

6 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

3 FEATURES THAT DEBUTED IN PYTHON 3.0 YOU SHOULD USE NOW .

THIS IS THE FIRST in a series of articles
about features that

first appeared in a version of Python 3.x. Python 3.0 was
first released in 2008, and even though it has been out for a
while, many of the features it introduced are underused and
pretty cool. Here are three you should know about.

Keyword-only arguments
Python 3.0 first introduced the idea of keyword-only argu-
ments. Before this, it was impossible to specify an API where
some arguments could be passed in only via keywords. This
is useful in functions with many arguments, some of which
might be optional.

Consider a contrived example:

def show_arguments(base, extended=None, improved=None,

augmented=None):

 print("base is", base)

 if extended is not None:

 print("extended is", extended)

 if improved is not None:

 print("improved is", improved)

 if augmented is not None:

 print("augmented is", augmented)

When reading code that calls this function, it is sometimes
hard to understand what is happening:

show_arguments("hello", "extra")

 base is hello

 extended is extra

show_arguments("hello", None, "extra")

 base is hello

 improved is extra

While it is possible to call this function with keyword argu-
ments, it is not obvious that this is the best way. Instead, you
can mark these arguments as keyword-only:

def show_arguments(base, *, extended=None, improved=None,

augmented=None):

 print("base is", base)

 if extended is not None:

 print("extended is", extended)

 if improved is not None:

 print("improved is", improved)

 if augmented is not None:

 print("augmented is", augmented)

Now, you can’t pass in the extra arguments with positional
arguments:

show_arguments("hello", "extra")

 TypeError Traceback (most recent call last)

 <ipython-input-7-6000400c4441> in <module>

 ----> 1 show_arguments("hello", "extra")

 TypeError: show_arguments() takes 1 positional argument but 2

were given

Valid calls to the function are much easier to predict:

show_arguments("hello", improved="extra")

 base is hello

 improved is extra

3 features that debuted in
Python 3.0 you should use now

Explore some of the underutilized but still useful Python features.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 7

. 3 FEATURES THAT DEBUTED IN PYTHON 3.0 YOU SHOULD USE NOW

nonlocal
Sometimes, functional programming folks judge a language
by how easy is it to write an accumulator. An accumulator is
a function that, when called, returns the sum of all arguments
sent to it so far.

The standard answer in Python before 3.0 was:

class _Accumulator:

 def __init__(self):

 self._so_far = 0

 def __call__(self, arg):

 self._so_far += arg

 return self._so_far

def make_accumulator():

 return _Accumulator()

While admittedly somewhat verbose, this does work:

acc = make_accumulator()

print("1", acc(1))

print("5", acc(5))

print("3", acc(3))

The output for this would be:

1 1

5 6

3 9

In Python 3.x, nonlocal can achieve the same behavior with
significantly less code.

def make_accumulator():

 so_far = 0

 def accumulate(arg):

 nonlocal so_far

 so_far += arg

 return so_far

 return accumulate

While accumulators are contrived examples, the ability to
use the nonlocal keyword to have inner functions with state
is a powerful tool.

Extended destructuring
Imagine you have a CSV file where each row consists of
several elements:

• The first element is a year
• The second element is a month
• The other elements are the total articles published that

month, one entry for each day

Note that the last element is total articles, not articles pub-
lished per day. For example, a row can begin with:

2021,1,5,8,10

This means that in January 2021, five articles were published
on the first day. On the second day, three more articles were
published, bringing the total to 8. On the third day, two more
articles were published.

Months can have 28, 30, or 31 days. How hard is it to ex-
tract the month, day, and total articles?

In versions of Python before 3.0, you might write some-
thing like:

year, month, total = row[0], row[1], row[-1]

This is correct, but it obscures the format. With extended
destructuring, the same can be expressed this way:

year, month, *rest, total = row

This means that if the format ever changes to prefix a de-
scription, you can change the code to:

_, year, month, *rest, total = row

Without needing to add 1 to each of the indices.

What’s next?
Python 3.0 and its later versions have been out for more
than 12 years, but some of its features are underutilized.
In the next article in this series, I’ll look at three more of
them.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

8 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

3 FEATURES RELEASED IN PYTHON 3.1 YOU SHOULD USE IN 2021 .

THIS IS THE SECOND in a series of
articles about

features that first appeared in a version of Python 3.x.
Python 3.1 was first released in 2009, and even though
it has been out for a long time, many of the features it
introduced are underused and pretty cool. Here are three
of them.

Thousands formatting
When formatting large numbers, it is common to place com-
mas every three digits to make the number more readable
(e.g., 1,048,576 is easier to read than 1048576). Since
Python 3.1, this can be done directly when using string for-
matting functions:

"2 to the 20th power is {:,d}".format(2**20)

'2 to the 20th power is 1,048,576'

The ,d format specifier indicates that the number must be
formatted with commas.

Counter class
The collections.Counter class, part of the standard library
module collections, is a secret super-weapon in Python.
It is often first encountered in simple solutions to interview
questions in Python, but its value is not limited to that.

For example, find the five most common letters in the first
eight lines of Humpty Dumpty’s song [1]:

hd_song = """

In winter, when the fields are white,

I sing this song for your delight.

In Spring, when woods are getting green,

I'll try and tell you what I mean.

In Summer, when the days are long,

Perhaps you'll understand the song.

In Autumn, when the leaves are brown,

Take pen and ink, and write it down.

"""

import collections

collections.Counter(hd_song.lower().replace(' ', ''))

 .most_common(5)

[('e', 29), ('n', 27), ('i', 18), ('t', 18), ('r', 15)]

Executing packages
Python allows the -m flag to execute modules from the
command line. Even some standard-library modules do
something useful when they’re executed; for example, py-
thon -m cgi is a CGI script that debugs the web server’s
CGI configuration.

However, until Python 3.1, it was impossible to execute
packages like this. Starting with Python 3.1, python -m
package will execute the __main__ module in the package.
This is a good place to put debug scripts or commands that
are executed mostly with tools and do not need to be short.

Python 3.0 was released over 11 years ago, but some of
the features that first showed up in this release are cool—and
underused. Add them to your toolkit if you haven’t already.

Links
[1] http://www2.open.ac.uk/openlearn/poetryprescription/

humpty-dumptys-recitation.html

3 features released in Python 3.1
you should use in 2021

Explore some of the underutilized but still useful Python features.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www2.open.ac.uk/openlearn/poetryprescription/humpty-dumptys-recitation.html
http://www2.open.ac.uk/openlearn/poetryprescription/humpty-dumptys-recitation.html
http://www2.open.ac.uk/openlearn/poetryprescription/humpty-dumptys-recitation.html

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 9

. 3 PYTHON 3.2 FEATURES THAT ARE STILL RELEVANT TODAY

THIS THE THIRD article in a series about
features that first ap-

peared in a version of Python 3.x. Some of those Python
versions have been out for a while. For example, Python 3.2
was first released in 2011, yet some of the cool and useful
features introduced in it are still underused. Here are three
of them.

argparse subcommands
The argparse module first appeared in Python 3.2. There
are many third-party modules for command-line parsing. But
the built-in argparse module is more powerful than many
give it credit for..

Documenting all the ins and outs of argparse would take
its own article series. For a small taste, here is an example
of how you can do subcommands with argparse.

Imagine a command with two subcommands: negate,
which takes one argument, and multiply which takes two:

$ computebot negate 5

-5

$ computebot multiply 2 3

6

import argparse

parser = argparse.ArgumentParser()

subparsers = parser.add_subparsers()

The add_subparsers() methods creates an object that you
can add subcommands to. The only trick to remember is that
you need to add what subcommand was called through a
set_defaults():

negate = subparsers.add_parser("negate")

negate.set_defaults(subcommand="negate")

negate.add_argument("number", type=float)

multiply = subparsers.add_parser("multiply")

multiply.set_defaults(subcommand="multiply")

multiply.add_argument("number1", type=float)

multiply.add_argument("number2", type=float)

One of my favorite argparse features is that, because it sep-
arates parsing from running, testing the parsing logic is par-
ticularly pleasant.

parser.parse_args(["negate", "5"])

 Namespace(number=5.0, subcommand='negate')

parser.parse_args(["multiply", "2", "3"])

 Namespace(number1=2.0, number2=3.0, subcommand='multiply')

contextlib.contextmanager
Contexts are a powerful tool in Python. While many use
them, writing a new context often seems like a dark art. With
the contextmanager decorator, all you need is a one-shot
generator.

Writing a context that prints out the time it took to do some-
thing is as simple as:

import contextlib, timeit

@contextlib.contextmanager

def timer():

 before = timeit.default_timer()

 try:

 yield

3 Python 3.2 features
that are still relevant today

Explore some of the underutilized but still useful Python features.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

10 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

3 PYTHON 3.2 FEATURES THAT ARE STILL RELEVANT TODAY .

It turns out that when you calculate how many ways you can
do something like making change from 50 cents, you use
the same coins repeatedly. You can use lru_cache to avoid
recalculating this over and over.

import functools

def change_for_a_dollar():

 @functools.lru_cache

 def change_for(amount, coins):

 if amount == 0:

 return 1

 if amount < 0 or len(coins) == 0:

 return 0

 some_coin = next(iter(coins))

 return (

 change_for(amount, coins - set([some_coin]))

 +

 change_for(amount - some_coin, coins)

)

 return change_for(100, frozenset([25, 10, 5, 1]))

with timer():

 change_for_a_dollar()

 took 0.004180959425866604

A three-fold improvement for the cost of one line. Not bad.

Welcome to 2011
Although Python 3.2 was released 10 years ago, many of
its features are still cool—and underused. Add them to your
toolkit if you haven’t already.

 finally:

 after = timeit.default_timer()

 print("took", after - before)

And you can use it with just:

import time

with timer():

 time.sleep(10.5)

 took 10.511025413870811

functools.lru_cache
Sometimes the caching results from a function in memory
make sense. For example, imagine the classical problem:
“How many ways can you make change for a dollar with
quarters, dimes, nickels, and cents?”

The code for this can be deceptively simple:

def change_for_a_dollar():

 def change_for(amount, coins):

 if amount == 0:

 return 1

 if amount < 0 or len(coins) == 0:

 return 0

 some_coin = next(iter(coins))

 return (

 change_for(amount, coins - set([some_coin]))

 +

 change_for(amount - some_coin, coins)

)

 return change_for(100, frozenset([25, 10, 5, 1]))

On my computer, this takes around 13ms:

with timer():

 change_for_a_dollar()

 took 0.013737603090703487

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 11

. WHAT PYTHON 3.3 DID TO IMPROVE EXCEPTION HANDLING IN YOUR CODE

THIS IS THE FOURTH in a series of ar-
ticles about fea-

tures that first appeared in a version of Python 3.x. Python
3.3 was first released in 2012, and even though it has been
out for a long time, many of the features it introduced are
underused and pretty cool. Here are three of them.

yield from
The yield keyword made Python much more powerful. Pre-
dictably, everyone started using it to create a whole ecosys-
tem of iterators. The itertools [1] module and the more-iter-
tools [2] PyPI package are just two examples..

Sometimes, a new generator will want to use an existing
generator. As a simple (if somewhat contrived) example,
imagine you want to enumerate all pairs of natural numbers.

One way to do it is to generate all pairs in the order of sum
of pair, first item of pair. Implementing this with yield
from is natural.

The yield from <x> keyword is short for:

for item in x:

 yield item

import itertools

def pairs():

 for n in itertools.count():

 yield from ((i, n-i) for i in range(n+1))

list(itertools.islice(pairs(), 6))

 [(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0)]

Implicit namespace packages
Imagine a fictional company called Parasol that makes
a bunch of stuff. Much of its internal software is written

in Python. While Parasol has open sourced some of its
code, some of it is too proprietary or specialized for open
source.

The company uses an internal DevPI [3] server to man-
age the internal packages. It does not make sense for every
Python programmer at Parasol to find an unused name on
PyPI, so all the internal packages are called parasol.<busi-
ness division>.<project>. Observing best practices, the
developers want the package names to reflect that naming
system.

This is important! If the package parasol.accounting.
numeric_tricks installs a top-level module called numeric_
tricks, this means nobody who depends on this package
will be able to use a PyPI package that is called numeric_
tricks, no matter how nifty it is.

However, this leaves the developers with a dilemma:
Which package owns the parasol/__init__.py file? The
best solution, starting in Python 3.3, is to make parasol, and
probably parasol.accounting, to be namespace packages
[4], which don’t have the __init__.py file.

Suppressing exception context
Sometimes, an exception in the middle of a recovery from
an exception is a problem, and having the context to trace
it is useful. However, sometimes it is not: the exception
has been handled, and the new situation is a different er-
ror condition.

For example, imagine that after failing to look up a key in
a dictionary, you want to fail with a ValueError() if it cannot
be analyzed:

import time

What Python 3.3 did to improve
exception handling in your code
Explore exception handling and other underutilized but still useful Python features.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://docs.python.org/3/library/itertools.html
https://more-itertools.readthedocs.io/en/stable/
https://opensource.com/article/18/7/setting-devpi
https://www.python.org/dev/peps/pep-0420/

12 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

WHAT PYTHON 3.3 DID TO IMPROVE EXCEPTION HANDLING IN YOUR CODE

 10 cached[data] = analyzed

 11 return analyzed[-1]

 ValueError: ('invalid data', 'stuff')

If you use raise ... from None, you can get much more
readable tracebacks:

def last_letter_analyzed(data):

 try:

 analyzed = cache[data]

 except KeyError:

 analyzed = expensive_analysis(data)

 if analyzed is None:

 raise ValueError("invalid data", data) from None

 cached[data] = analyzed

 return analyzed[-1]

last_letter_analyzed("stuff")

 ValueError Traceback (most recent call last)

 <ipython-input-21-40dab921f9a9> in <module>

 ----> 1 last_letter_analyzed("stuff")

 <ipython-input-20-5691e33edfbc> in last_letter_analyzed(data)

 5 analyzed = expensive_analysis(data)

 6 if analyzed is None:

 ----> 7 raise ValueError("invalid data", data)

 from None

 8 cached[data] = analyzed

 9 return analyzed[-1]

 ValueError: ('invalid data', 'stuff')

Welcome to 2012
Although Python 3.3 was released almost a decade ago,
many of its features are still cool—and underused. Add them
to your toolkit if you haven’t already.

Links
[1] https://docs.python.org/3/library/itertools.html
[2] https://more-itertools.readthedocs.io/en/stable/
[3] https://opensource.com/article/18/7/setting-devpi
[4] https://www.python.org/dev/peps/pep-0420/

def expensive_analysis(data):

 time.sleep(10)

 if data[0:1] == ">":

 return data[1:]

 return None

This function takes a long time, so when you use it, you want
to cache the results:

cache = {}

def last_letter_analyzed(data):

 try:

 analyzed = cache[data]

 except KeyError:

 analyzed = expensive_analysis(data)

 if analyzed is None:

 raise ValueError("invalid data", data)

 cached[data] = analyzed

 return analyzed[-1]

Unfortunately, when there is a cache miss, the traceback
looks ugly:

last_letter_analyzed("stuff")

 KeyError Traceback (most recent call last)

 <ipython-input-16-a525ae35267b> in last_letter_analyzed(data)

 4 try:

 ----> 5 analyzed = cache[data]

 6 except KeyError:

 KeyError: 'stuff'

During handling of the above exception, another exception
occurs:

 ValueError Traceback (most recent call last)

 <ipython-input-17-40dab921f9a9> in <module>

 ----> 1 last_letter_analyzed("stuff")

 <ipython-input-16-a525ae35267b> in last_letter_analyzed(data)

 7 analyzed = expensive_analysis(data)

 8 if analyzed is None:

 ----> 9 raise ValueError("invalid data", data)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://docs.python.org/3/library/itertools.html
https://more-itertools.readthedocs.io/en/stable/
https://opensource.com/article/18/7/setting-devpi
https://www.python.org/dev/peps/pep-0420/

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 13

. LOOKING BACK AT WHAT PYTHON 3.4 DID FOR ENUM

THIS IS THE FIFTH in a series of articles
about features that

first appeared in a version of Python 3.x. Python 3.4 was first
released in 2014, and even though it has been out for a long
time, many of the features it introduced are underused and
pretty cool. Here are three of them.

enum
One of my favorite logic puzzles is the self-descriptive Hard-
est Logic Puzzle Ever [1]. Among other things, it talks about
three gods who are called A, B, and C. Their identities are True,
False, and Random, in some order. You can ask them ques-
tions, but they only answer in the god language, where “da” and
“ja” mean “yes” and “no,” but you do not know which is which.

If you decide to use Python to solve the puzzle, how would
you represent the gods’ names and identities and the words
in the god language? The traditional answer has been to use
strings. However, strings can be misspelled with disastrous
consequences.

If, in a critical part of your solution, you compare to the
string jaa instead of ja, you will have an incorrect solution.
While the puzzle does not specify what the stakes are, that’s
probably best avoided.

The enum module gives you the ability to define these
things in a debuggable yet safe manner:

import enum

@enum.unique

class Name(enum.Enum):

 A = enum.auto()

 B = enum.auto()

 C = enum.auto()

@enum.unique

class Identity(enum.Enum):

 RANDOM = enum.auto()

 TRUE = enum.auto()

 FALSE = enum.auto()

@enum.unique

class Language(enum.Enum):

 ja = enum.auto()

 da = enum.auto()

One advantage of enums is that in debugging logs or excep-
tions, the enum is rendered helpfully:

name = Name.A

identity = Identity.RANDOM

answer = Language.da

print("I suspect", name, "is", identity, "because they

answered", answer)

 I suspect Name.A is Identity.RANDOM because they answered

Language.da

functools.singledispatch
While developing the “infrastructure” layer of a game, you
want to deal with various game objects generically but still
allow the objects to customize actions. To make the example
easier to explain, assume it’s a text-based game. When you
use an object, most of the time, it will just print You are using
<x>. But using a special sword might require a random roll,
and it will fail otherwise.

When you acquire an object, it is usually added to the
inventory. However, a particularly heavy rock will smash a

Looking back at what Python 3.4
did for enum
Plus explore some of the underutilized but still useful Python features.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/The_Hardest_Logic_Puzzle_Ever

14 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

 else:

 print("You fail")

deploy(sword)

 You try to use sword

 You succeed

 You have ['sword', 'torch']

import random

@acquire.register(Rock)

def acquire_rock(rock, inventory):

 to_remove = random.choice(list(inventory))

 inventory.remove(to_remove)

 inventory.add(rock)

deploy(Rock())

 You use rock

 You have ['sword', 'rock']

The rock might have crushed the torch, but your code is
much easier to read.

pathlib
The interface to file paths in Python has been “smart-string
manipulation” since the beginning of time. Now, with path-
lib, Python has an object-oriented way to manipulate paths:

import pathlib

gitconfig = pathlib.Path.home() / ".gitconfig"

text = gitconfig.read_text().splitlines()

Admittedly, using / as an operator to generate path names
is a little cutesy, but it ends up being nice in practice.
Methods like .read_text() allow you to get text out of
small files without needing to open and close file handles
manually.

This lets you concentrate on the important stuff:

for line in text:

 if not line.strip().startswith("name"):

 continue

 print(line.split("=")[1])

 Moshe Zadka

Welcome to 2014
Python 3.4 was released about seven years ago, but some of
the features that first showed up in this release are cool—and
underused. Add them to your toolkit if you haven’t already.

Links
[1] https://en.wikipedia.org/wiki/The_Hardest_Logic_Puzzle_

Ever

random object; if that happens, the inventory will lose that
object.

One way to approach this is to have methods use and ac-
quire on objects. More and more of these methods will be
added as the game’s complexity increases, making game
objects unwieldy to write.

Instead, functools.singledispatch allows you to add
methods retroactively—in a safe and namespace-respecting
manner.

You can define classes with no behavior:

class Torch:

 name="torch"

class Sword:

 name="sword"

class Rock:

 name="rock"

import functools

@functools.singledispatch

def use(x):

 print("You use", x.name)

@functools.singledispatch

def acquire(x, inventory):

 inventory.add(x)

For the torch, those generic implementations are enough:

inventory = set()

def deploy(thing):

 acquire(thing, inventory)

 use(thing)

 print("You have", [item.name for item in inventory])

deploy(Torch())

 You use torch

 You have ['torch']

However, the sword and the rock need some specialized
functionality:

import random

@use.register(Sword)

def use_sword(sword):

 print("You try to use", sword.name)

 if random.random() < 0.9:

 print("You succeed")

LOOKING BACK AT WHAT PYTHON 3.4 DID FOR ENUM .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/The_Hardest_Logic_Puzzle_Ever
https://en.wikipedia.org/wiki/The_Hardest_Logic_Puzzle_Ever

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 15

. CONVENIENT MATRICES AND OTHER IMPROVEMENTS PYTHON 3.5 BROUGHT US

THIS IS THE SIXTH in a series of articles
about features that

first appeared in a version of Python 3.x. Python 3.5 was first
released in 2015, and even though it has been out for a long
time, many of the features it introduced are underused and
pretty cool. Here are three of them.

The @ operator
The @ operator is unique in Python in that there are no ob-
jects in the standard library that implement it! It was added
for use in mathematical packages that have matrices.

Matrices have two concepts of multiplication; point-wise
multiplication is done with the * operator. But matrix com-
position (also considered multiplication) needed its own
symbol. It is done using @.

For example, composing an “eighth-turn” matrix (rotating
the axis by 45 degrees) with itself results in a quarter-turn
matrix:

import numpy

hrt2 = 2**0.5 / 2

eighth_turn = numpy.array([

 [hrt2, hrt2],

 [-hrt2, hrt2]

])

eighth_turn @ eighth_turn

 array([[4.26642159e-17, 1.00000000e+00],

 [-1.00000000e+00, -4.26642159e-17]])

Floating-point numbers being imprecise, this is harder to see.
It is easier to check by subtracting the quarter-turn matrix from
the result, summing the squares, and taking the square root.

This is one advantage of the new operator: especially in
complex formulas, the code looks more like the underlying
math:

almost_zero = ((eighth_turn @ eighth_turn) - numpy.array([[0, 1],

 [-1, 0]]))**2

round(numpy.sum(almost_zero) ** 0.5, 10)

 0.0

Multiple keyword dictionaries in arguments
Python 3.5 made it possible to call functions with multiple
keyword-argument dictionaries. This means multiple sourc-
es of defaults can “co-operate” with clearer code.

For example, here is a function with a ridiculous amount of
keyword arguments:

def show_status(

 *,

 the_good=None,

 the_bad=None,

 the_ugly=None,

 fistful=None,

 dollars=None,

 more=None

):

 if the_good:

 print("Good", the_good)

 if the_bad:

 print("Bad", the_bad)

 if the_ugly:

 print("Ugly", the_ugly)

 if fistful:

 print("Fist", fistful)

Convenient matrices and other
improvements Python 3.5 brought us
Explore some of the underutilized but still useful Python features.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

16 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

 Bad I have to have respect

 Ugly Shoot, don't talk

 Fist Get three coffins ready

 Dollars Remember me?

 More It's a small world

os.scandir
The os.scandir function is a new way to iterate through di-
rectories’ contents. It returns a generator that yields rich data
about each object. For example, here is a way to print a di-
rectory listing with a trailing / at the end of directories:

for entry in os.scandir(".git"):

 print(entry.name + ("/" if entry.is_dir() else ""))

 refs/

 HEAD

 logs/

 index

 branches/

 config

 objects/

 description

 COMMIT_EDITMSG

 info/

 hooks/

Welcome to 2015
Python 3.5 was released over six years ago, but some of
the features that first showed up in this release are cool—
and underused. Add them to your toolkit if you haven’t al-
ready.

 if dollars:

 print("Dollars", dollars)

 if more:

 print("More", more)

When you call this function in the application, some argu-
ments are hardcoded:

defaults = dict(

 the_good="You dig",

 the_bad="I have to have respect",

 the_ugly="Shoot, don't talk",

)

More arguments are read from a configuration file:

import json

others = json.loads("""

{

"fistful": "Get three coffins ready",

"dollars": "Remember me?",

"more": "It's a small world"

}

""")

You can call the function from both sources together without
having to construct an intermediate dictionary:

show_status(**defaults, **others)

 Good You dig

CONVENIENT MATRICES AND OTHER IMPROVEMENTS PYTHON 3.5 BROUGHT US

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 17

. ARE YOU USING THIS MAGIC METHOD FOR FILESYSTEMS FROM PYTHON 3.6?

THIS IS THE SEVENTH in a series of
articles about

features that first appeared in a version of Python 3.x. Py-
thon 3.6 was first released in 2016, and even though it has
been out for a while, many of the features it introduced are
underused and pretty cool. Here are three of them.

Separated numeral constants
Quick, which is bigger, 10000000 or 200000? Would you be
able to answer correctly while scanning through code? De-
pending on local conventions, in prose writing, you would
use 10,000,000 or 10.000.000 for the first number. The trou-
ble is, Python uses commas and periods for other reasons.

Fortunately, since Python 3.6, you can use underscores to
separate digits. This works both directly in code and when
using the int() convertor from strings:

import math

math.log(10_000_000) / math.log(10)

 7.0

math.log(int("10_000_000")) / math.log(10)

 7.0

Tau is right
What’s a 45-degree angle expressed in radians? One correct
answer is π/4, but that’s a little hard to remember. It’s much
easier to remember that a 45-degree angle is an eighth of
a turn. As the Tau Manifesto [1] explains, 2π, called Τ, is a
more natural constant.

In Python 3.6 and later, your math code can use the more
intuitive constant:

print("Tan of an eighth turn should be 1, got",

 round(math.tan(math.tau/8), 2))

print("Cos of an sixth turn should be 1/2, got",

 round(math.cos(math.tau/6), 2))

print("Sin of a quarter turn should be 1, go",

 round(math.sin(math.tau/4), 2))

 Tan of an eighth turn should be 1, got 1.0

 Cos of an sixth turn should be 1/2, got 0.5

 Sin of a quarter turn should be 1, go 1.0

os.fspath
Starting in Python 3.6, there is a magic method that rep-
resents “convert to a filesystem path.” When given an str or
bytes, it returns the input.

For all types of objects, it looks for an __fspath__ method
and calls it. This allows passing around objects that are “file-
names with metadata.”

Normal functions like open() or stat will still be able to use
them, as long as __fspath__ returns the right thing.

For example, here is a function that writes some data into
a file and then checks its size. It also logs the file name to
standard output for tracing purposes:

def write_and_test(filename):

 print("writing into", filename)

 with open(filename, "w") as fpout:

 fpout.write("hello")

 print("size of", filename, "is", os.path.getsize(filename))

You can call it the way you would expect, with a string for a
filename:

write_and_test("plain.txt")

 writing into plain.txt

 size of plain.txt is 5

However, it is possible to define a new class that adds infor-
mation to the string representation of filenames. This allows
the logging to be more detailed, without changing the original
function:

Are you using this magic method
for filesystems from Python 3.6?
Explore os.fspath and two other underutilized but still useful Python features.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://tauday.com/tau-manifesto

18 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

ARE YOU USING THIS MAGIC METHOD FOR FILESYSTEMS FROM PYTHON 3.6?

write_and_test(DocumentedFileName("documented.txt",

 "because it's fun"))

 writing into DocumentedFileName(fname='documented.txt',

 why="because it's fun")

 size of DocumentedFileName(fname='documented.txt',

 why="because it's fun") is 5

Welcome to 2016
Python 3.6 was released about five years ago, but some of
the features that first showed up in this release are cool—and
underused. Add them to your toolkit if you haven’t already.

Links
[1] https://tauday.com/tau-manifesto

class DocumentedFileName:

 def __init__(self, fname, why):

 self.fname = fname

 self.why = why

 def __fspath__(self):

 return self.fname

 def __repr__(self):

 return f"DocumentedFileName(fname={self.fname!r},

 why={self.why!r})"

Running the function with a DocumentedFileName instance
as input allows the open and os.getsize functions to keep
working while enhancing the logs:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://tauday.com/tau-manifesto

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 19

THIS IS THE EIGHTH in a series of ar-
ticles about fea-

tures that first appeared in a version of Python 3.x. Py-
thon 3.7 [1] was first released in 2018, and even though
it has been out for a few years, many of the features it
introduced are underused and pretty cool. Here are three
of them.

Postponed evaluation of annotations
In Python 3.7, as long as the right __future__ flags are acti-
vated, annotations are not evaluated during runtime:

from __future__ import annotations

def another_brick(wall: List[Brick], brick: Brick) -> Education:

 pass

another_brick.__annotations__

 {'wall': 'List[Brick]', 'brick': 'Brick', 'return': 'Education'}

This allows recursive types (classes that refer to themselves)
and other fun things. However, it means that if you want to do
your own type analysis, you need to use ast explictly:

import ast

raw_type = another_brick.__annotations__['wall']

[parsed_type] = ast.parse(raw_type).body

subscript = parsed_type.value

f"{subscript.value.id}[{subscript.slice.id}]"

 'List[Brick]'

itertools.islice supports __index__
Sequence slices in Python have long accepted all kinds of
int-like objects (objects that have __index__()) as valid slice
parts. However, it wasn’t until Python 3.7 that itertools.is-
lice, the only way in core Python to slice infinite generators,
gained this support.

For example, now it is possible to slice infinite generators
by numpy.short-sized integers:

import numpy

short_1 = numpy.short(1)

short_3 = numpy.short(3)

short_1, type(short_1)

 (1, numpy.int16)

import itertools

list(itertools.islice(itertools.count(), short_1, short_3))

 [1, 2]

functools.singledispatch() annotation registration
If you thought singledispatch [2] couldn’t get any cooler,
you were wrong. Now it is possible to register based on
annotations:

import attr

import math

from functools import singledispatch

@attr.s(auto_attribs=True, frozen=True)

class Circle:

 radius: float

@attr.s(auto_attribs=True, frozen=True)

class Square:

 side: float

@singledispatch

def get_area(shape):

 raise NotImplementedError("cannot calculate area for unknown

 shape", shape)

@get_area.register

def _get_area_square(shape: Square):

 return shape.side ** 2

@get_area.register

def _get_area_circle(shape: Circle):

 return math.pi * (shape.radius ** 2)

get_area(Circle(1)), get_area(Square(1))

 (3.141592653589793, 1)

Welcome to 2017
Python 3.7 was released about four years ago, but some of
the features that first showed up in this release are cool—and
underused. Add them to your toolkit if you haven’t already.

Links
[1] https://opensource.com/downloads/cheat-sheet-python-

37-beginners
[2] https://opensource.com/article/19/5/python-singledispatch

Slice infinite generators
with this Python 3.7 feature
Learn more about this and two other underutilized but still useful Python features.

. SLICE INFINITE GENERATORS WITH THIS PYTHON 3.7 FEATURE

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/downloads/cheat-sheet-python-37-beginners
https://opensource.com/article/19/5/python-singledispatch
https://opensource.com/downloads/cheat-sheet-python-37-beginners
https://opensource.com/downloads/cheat-sheet-python-37-beginners
https://opensource.com/article/19/5/python-singledispatch

20 30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM

MAKE YOUR API BETTER WITH THIS POSITIONAL TRICK FROM PYTHON 3.8

THIS IS THE NINTH in a series of articles
about features that

first appeared in a version of Python 3.x. Python 3.8 was first
released in 2019, and two years later, many of its cool new
features remain underused. Here are three of them.

importlib.metadata
Entry points [1] are used for various things in Python packag-
es. The most familiar are console_scripts [2] entrypoints, but
many plugin systems in Python use them.

Until Python 3.8, the best way to read entry points from
Python was to use pkg_resources, a somewhat clunky mod-
ule that is part of setuptools.

The new importlib.metadata is a built-in module that al-
lows access to the same thing:

from importlib import metadata as importlib_metadata

distribution = importlib_metadata.distribution("numpy")

distribution.entry_points

 [EntryPoint(name='f2py', value='numpy.f2py.f2py2e:main',

 group='console_scripts'),

 EntryPoint(name='f2py3', value='numpy.f2py.f2py2e:main',

 group='console_scripts'),

 EntryPoint(name='f2py3.9', value='numpy.f2py.f2py2e:main',

 group='console_scripts')]

Entry points are not the only thing importlib.metadata permits
access to. For debugging, reporting, or (in extreme circum-
stances) triggering compatibility modes, you can also check
the version of dependencies—at runtime!

f"{distribution.metadata['name']}=={distribution.version}"

 'numpy==1.20.1'

Positional-only parameters
After the wild success of keywords-only arguments at com-
municating API authors’ intentions, another gap was filled:
positional-only arguments.

Especially for functions that allow arbitrary keywords (for
example, to generate data structures), this means there are
fewer constraints on allowed argument names:

def some_func(prefix, /, **kwargs):

 print(prefix, kwargs)

some_func("a_prefix", prefix="prefix keyword value")

 a_prefix {'prefix': 'prefix keyword value'}

Note that, confusingly, the value of the variable prefix is dis-
tinct from the value of kwargs["prefix"]. As in many places,
take care to use this feature carefully.

Self-debugging expressions
The print() statement (and its equivalent in other languages)
has been a favorite for quickly debugging output for over
50 years.

But we have made much progress in print statements like:

special_number = 5

print("special_number = %s" % special_number)

 special_number = 5

Yet self-documenting f-strings make it even easier to be clear:

print(f"{special_number=}")

 special_number=5

Adding an = to the end of an f-string interpolated section
keeps the literal part while adding the value.

This is even more useful when more complicated expres-
sions are inside the section:

values = {}

print(f"{values.get('something', 'default')=}")

 values.get('something', 'default')='default'

Welcome to 2019
Python 3.8 was released about two years ago, and some of
its new features are cool—and underused. Add them to your
toolkit if you haven’t already.

Links
[1] https://packaging.python.org/specifications/entry-points/
[2] https://python-packaging.readthedocs.io/en/latest/

command-line-scripts.html

Make your API better with this
positional trick from Python 3.8
Explore positional-only parameters and two other underutilized but still useful Python features.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://packaging.python.org/specifications/entry-points/
https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html
https://packaging.python.org/specifications/entry-points/
https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html
https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html

30 HIDDEN GEMS IN PYTHON 3 ... CC BY-SA 4.0 ... OPENSOURCE.COM 21

. HOW PYTHON 3.9 FIXED DECORATORS AND IMPROVED DICTIONARIES

THIS IS THE TENTH in a series of ar-
ticles about fea-

tures that first appeared in a version of Python 3.x. Some
of these versions have been out for a while. Python 3.9 was
first released in 2020 with cool new features that are still
underused. Here are three of them.

Adding dictionaries
Say you have a dictionary with “defaults,” and you want
to update it with parameters. Before Python 3.9, the best
option was to copy the defaults dictionary and then use the
.update() method.

Python 3.9 introduced the union operator to dictionaries:

defaults = dict(who="someone", where="somewhere")

params = dict(where="our town", when="today")

defaults | params

 {'who': 'someone', 'where': 'our town', 'when': 'today'}

Note that the order matters. In this case, the where value
from params overrides the default, as it should.

Removing prefixes
If you have done ad hoc text parsing or cleanup with Python,
you will have written code like:

def process_pricing_line(line):

 if line.startswith("pricing:"):

 return line[len("pricing:"):]

 return line

process_pricing_line("pricing:20")

 '20'

This kind of code is prone to errors. For example, if the string
is copied incorrectly to the next line, the price will become 0
instead of 20, and it will happen silently.

Since Python 3.9, strings have a .removeprefix() method:

>>> "pricing:20".removeprefix("pricing:")

'20'

Arbitrary decorator expressions
Previously, the rules about which expressions are allowed in
a decorator were underdocumented and hard to understand.
For example, while:

@item.thing

def foo():

 pass

is valid, and:

@item.thing()

def foo():

 pass

is valid, the similar:

@item().thing

def foo():

 pass

produces a syntax error.
Starting in Python 3.9, any expression is valid as a decorator:

from unittest import mock

item = mock.MagicMock()

@item().thing

def foo():

 pass

print(item.return_value.thing.call_args[0][0])

 <function foo at 0x7f3733897040>

While keeping to simple expressions in the decorator line is
still a good idea, it is now a human decision, rather than the
Python parser’s option.

Welcome to 2020
Python 3.9 was released about one year ago, but some of
the features that first showed up in this release are cool—and
underused. Add them to your toolkit if you haven’t already.

How Python 3.9 fixed decorators
and improved dictionaries
Explore some of the useful features of the recent version of Python.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

