
6 surprising ways
to use Jupyter

Opensource.com

Jupyter is much more than a data-analysis tool.
Learn about some of the most creative ways

you can use the Python-based software.

http://www.opensource.com

OPENSOURCE.COM .

2 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: opensource.com/story

Email us: open@opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
http://opensource.com
http://opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 3

. ABOUT THE AUTHOR

MOSHE ZADKA Moshe has been involved in the Linux community
since 1998, helping in Linux "installation parties".

He has been programming Python since 1999, and has contributed to the core
Python interpreter. Moshe has been a
DevOps/SRE since before those terms
existed, caring deeply about software
reliability, build reproducibility and other
such things. He has worked in companies
as small as three people and as big as
tens of thousands—usually some place
around where software meets system
administration.
Follow me at @moshezadka

SETH KENLON

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://twitter.com/moshezadka

4 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

CONTENTS .

CHAPTERS

Teach kids Python by building an interactive game 6

Create a slide deck using Jupyter Notebooks 12

Build a remote management console using Python 14
and Jupyter Notebooks

Edit images with Jupyter and Python 16

Teach Python with Jupyter Notebooks 18

Improve your time management with Jupyter 21

Explore the world of programming with Jupyter 24

JupyterLab Cheat Sheet 25

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. INTRODUCTION

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 5

Introduction
THE JUPYTER PROJECT offers interactive ways

to write software with
technology like JupyterLab and Jupyter Notebook. This software is commonly
used for data analysis, but what you might not know (and the Jupyter community
didn’t expect) is how many things you can do with it. Here are unexpected and
creative ways to use Jupyter.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://jupyter.org/

6 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

PYTHON HAS EARNED a reputation as a wonderful be-
ginner programming language. But where

does one begin?
One of my favorite ways to get people interested in pro-

gramming is by writing games.
PursuedPyBear (ppb) [1] is a game programming library

optimized for teaching, and I recently used it to teach my
children more about my favorite programming language [2].

The Jupyter [3] project is a browser-based Python con-
sole, initially designed for data scientists to play with data.

I have a Jupyter Notebook designed to teach you how to
make a simple interactive game, which you can download
from here [4]. In order to open the file, you will need to install
the latest Jupyter project, JupyterLab.

Prerequisites:

• Running a recent version of Python (instructions for Linux [5],
Mac [6], and Windows [7])

• Running a recent version of Git (instructions here [8])

We will briefly configure a virtual environment to create a
separate space for the needed libraries. (You can learn more
about how virtual environments work here [9].)

$ git clone https://github.com/moshez/penguin-bit-by-bit.git

$ cd penguin-bit-by-bit

$ python -m venv venv

$ source ./venv/bin/activate

$ pip install -r requirements.txt

$ jupyter lab .

The last command should open JupyterLab in your default
browser at the address http://localhost:8888/lab. Choose the
dynamic_penguin.ipynb file in the left-hand column, and
we can get started!

The event loop that will run the game
Jupyter runs an event loop internally, which is a process that
manages the running of further asynchronous operations.
The event loop used in Jupyter is asyncio [10], and Pur-
suedPyBear runs its own event loop.

We can integrate the two using another library, Twisted [11],
like glue. This sounds complicated, but thankfully, the com-
plexity is hidden behind libraries, which will do all the hard
work for us.

The following cell in Jupyter takes care of the first half—
integrating Twisted with the asyncio event loop.

The __file__ = None is needed to integrate PursuedPyBear
with Jupyter.

from twisted.internet import asyncioreactor

asyncioreactor.install()

__file__ = None

Next, we need a “setup” function. A setup function is a com-
mon term for the configuration of key game elements. How-
ever, our function will only put the game “scene” in a global

Teach kids Python by building
an interactive game
Open source tools can help anyone get started learning Python in an easy
and fun way—making games.

TEACH KIDS PYTHON BY BUILDING AN INTERACTIVE GAME .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://ppb.dev/
https://opensource.com/article/19/10/why-love-python
https://opensource.com/article/18/3/getting-started-jupyter-notebooks
https://github.com/moshez/penguin-bit-by-bit/blob/master/dynamic_penguin.ipynb
https://opensource.com/article/20/4/install-python-linux
https://opensource.com/article/19/5/python-3-default-mac
https://opensource.com/article/19/8/how-install-python-windows
https://git-scm.com/download
https://opensource.com/article/19/6/python-virtual-environments-mac
https://docs.python.org/3/library/asyncio-eventloop.html
https://opensource.com/article/20/3/treq-python

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 7

Now let’s put the penguin riiiiiight in the middle.

SCENE.add(Penguin(pos=(0,0)))

It carefully sits there in the middle. This is marginally more
interesting than having nothing. That’s good—this is exactly
what we want. In incremental game development, every step
should be only marginally more interesting.

Adding movement to our penguin game with ppb
But penguins are not meant to sit still! The penguin should
move around. We will have the player control the penguin
with the arrow keys. First, let’s map the keys to vectors:

from ppb import keycodes

DIRECTIONS = { keycodes.Left: ppb.Vector(-1,0), keycodes.Right:

ppb.Vector(1,0),

 keycodes.Up: ppb.Vector(0, 1), keycodes.Down:

ppb.Vector(0, -1)}

Now we will use a utility library. The set_in_class function
sets the method in the class. Python’s ability to add functions
to classes retroactively is really coming in handy!

from mzutil import set_in_class

Penguin.direction = ppb.Vector(0, 0)

@set_in_class(Penguin)

def on_update(self, update_event, signal):

 self.position += update_event.time_delta * self.direction

The code for set_in_class is not long, but it does use some
non-trivial Python tricks. We will put the full utility library at
the end of the article for review, and for the sake of flow, we
will skip it for now.

Back to the penguin!
Oh, um, well.

variable. Think of it like us defining the table on which we will
play our game.

The following cell in Jupyter Notebook will do the trick.

def setup(scene):

 global SCENE

 SCENE = scene

Now we need to integrate PursuedPyBear’s event loop with
Twisted. We use the txppb module for that:

import txppb

d = txppb.run(setup)

d.addBoth(print)

The print at the end helps us if the game crashes because
of a bug—it will print out a traceback to the Jupyter output.

This will show an empty window, ready for the game
elements.

This is where we start taking advantage of Jupyter—tradi-
tionally, the whole game needs to be written before we start
playing. We buck convention, however, and start playing the
game immediately!

Making the game interesting with interaction
It is not a very interesting game, though. It has nothing and
just sits there. If we want something, we better add it.

In video game programming, the things moving on the
screen are called “sprites.” In PursuedPyBear, sprites are
represented by classes. A sprite will automatically use an
image named the same as the class. I got a little penguin
image from Kenney [12], a collection of free and open source
video game assets.

import ppb

class Penguin(ppb.Sprite):

 pass

. TEACH KIDS PYTHON BY BUILDING AN INTERACTIVE GAME

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kenney.nl/

8 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

Click to view image animation.
The Penguin is a bit bored, isn’t it? Maybe we should give it
an orange ball to play with.

class OrangeBall(ppb.Sprite):

 pass

Again, I made sure to have an image called orangeball.png.
Now let’s put the ball on the left side of the screen.

SCENE.add(OrangeBall(pos=(-4, 0)))

Click to view image animation.
Try as it might, the penguin cannot kick the ball. Let’s have
the ball move away from the penguin when it approaches.

First, let’s define what it means to “kick” the ball. Kicking
the ball means deciding where it is going to be in one sec-
ond, and then setting its state to “moving.”

At first, we will just move it by having the first update move
it to the target position.

The penguin is diligently moving…at zero speed, pre-
cisely nowhere. Let’s manually set the direction to see
what happens.

Penguin.direction = DIRECTIONS[keycodes.Up]/4

Click to view image animation.
The direction is up, but a little slow. This gives enough time
to set the penguin’s direction back to zero manually. Let’s do
that now!

Penguin.direction = ppb.Vector(0, 0)

Adding interactivity to our penguin game
Phew, that was exciting—but not what we wanted. We want
the penguin to respond to keypresses. Controlling it from the
code is what gamers refer to as “cheating.”

Let’s set it to set the direction to the keypress, and back to
zero when the key is released.

@set_in_class(Penguin)

def on_key_pressed(self, key_event, signal):

 self.direction = DIRECTIONS.get(key_event.key, ppb.

Vector(0, 0))

@set_in_class(Penguin)

def on_key_released(self, key_event, signal):

 if key_event.key in DIRECTIONS:

 self.direction = ppb.Vector(0, 0)

TEACH KIDS PYTHON BY BUILDING AN INTERACTIVE GAME .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/5/python-games
https://opensource.com/article/20/5/python-games
https://opensource.com/article/20/5/python-games

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 9

OrangeBall.is_moving = False

@set_in_class(OrangeBall)

def kick(self, direction):

 self.target_position = self.position + direction

 self.original_position = self.position

 self.time_passed = 0

 self.is_moving = True

@set_in_class(OrangeBall)

def on_update(self, update_event, signal):

 if self.is_moving:

 self.position = self.target_position

 self.is_moving = False

Now, let’s kick it!

ball, = SCENE.get(kind=OrangeBall)

ball.kick(ppb.Vector(1, 1))

But this just teleports the ball; it immediately changes the
position. In real life, the ball goes between the intermediate
points. When it’s moving, it will interpolate between where it
is and where it needs to go.

Naively, we would use linear interpolation [13]. But a cool
video game trick is to use an “easing” function. Here, we use
the common “smooth step.”

from mzutil import smooth_step

@set_in_class(OrangeBall)

def maybe_move(self, update_event, signal):

 if not self.is_moving:

 return False

 self.time_passed += update_event.time_delta

 if self.time_passed >= 1:

 self.position = self.target_position

 self.is_moving = False

 return False

 t = smooth_step(self.time_passed)

 self.position = (1-t) * self.original_position + t * self.

target_position

 return True

OrangeBall.on_update = OrangeBall.maybe_move

Now, let’s try kicking it again.

ball, = SCENE.get(kind=OrangeBall)

ball.kick(ppb.Vector(1, -1))

Click to view image animation.
But really, the penguin should be kicking the ball. When the
ball sees that it is colliding with the penguin, it will kick itself
in the opposite direction. If the penguin has gotten right on
top of it, the ball will choose a random direction.

The update function now calls maybe_move and will only
check collision if we are not moving right now.

from mzutil import collide

import random

OrangeBall.x_offset = OrangeBall.y_offset = 0.25

@set_in_class(OrangeBall)

def on_update(self, update_event,signal):

 if self.maybe_move(update_event, signal):

 return

 penguin, = update_event.scene.get(kind=Penguin)

 if not collide(penguin, self):

 return

 try:

 direction = (self.position -

penguin.position).normalize()

 except ZeroDivisionError:

 direction = ppb.Vector(random.uniform(-1, 1),

random.uniform(-1, 1)).normalize()

 self.kick(direction)

. TEACH KIDS PYTHON BY BUILDING AN INTERACTIVE GAME

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/Linear_interpolation
https://opensource.com/article/20/5/python-games

10 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

TEACH KIDS PYTHON BY BUILDING AN INTERACTIVE GAME .

@set_in_class(Target)

def on_update(self, update_event, signal):

 for ball in update_event.scene.get(kind=OrangeBall):

 if not collide(ball, self):

 continue

 update_event.scene.remove(ball)

 update_event.scene.add(OrangeBall(pos=(-4, random.

uniform(-3, 3))))

 update_event.scene.add(Fish(pos=(random.uniform(-4, -3),

 random.uniform(-3, 3))))

Click to view image animation.
We want to have the penguin eat the fish. When the fish sees
the penguin, it should vanish.

Fish.x_offset = 0.05

Fish.y_offset = 0.2

@set_in_class(Fish)

def on_update(self, update_event,signal):

 penguin, = update_event.scene.get(kind=Penguin)

 if collide(penguin, self):

 update_event.scene.remove(self)

It works!
Iterative game design is fun for penguins and people alike!
This has all the makings of a game: the player-controlled

penguin kicks the ball into the target, gets a fish, eats the
fish, and kicks a new ball. This would work as a “grinding
level” part of a game, or we could add obstacles to make the
penguin’s life harder.

Whether you are an experienced programmer, or just
getting started, programming video games is fun. Pur-
suedPyBear with Jupyter brings all the joy of classic 2D
games with the interactive programming capabilities of the
classic environments like Logo and Smalltalk. Time to enjoy
a little retro 80s!

Click to view image animation.
But just kicking a ball around is not that much fun. Let’s add
a target.

class Target(ppb.Sprite):

 pass

Let’s put the target at the right of the screen.

SCENE.add(Target(pos=(4, 0)))

Click to view image animation.

Rewarding our penguin
Now, we will want a reward for the penguin when it kicks the
ball into the target. How about a fish?

class Fish(ppb.Sprite):

 pass

When the target gets the ball, it should remove it and create
a new ball at the other end of the screen. Then, it will cause
a fish to appear.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/5/python-games
https://opensource.com/article/20/5/python-games
https://opensource.com/article/20/5/python-games

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 11

. TEACH KIDS PYTHON BY BUILDING AN INTERACTIVE GAME

def collide(sprite1, sprite2):

 return (_extreme_side(sprite1, sprite2, 'bottom') <

 _extreme_side(sprite1, sprite2, 'top')

 and

 _extreme_side(sprite1, sprite2, 'left') <

 _extreme_side(sprite1, sprite2, 'right'))

Links
[1] https://ppb.dev/
[2] https://opensource.com/article/19/10/why-love-python
[3] https://opensource.com/article/18/3/getting-started-jupyter-

notebooks
[4] https://github.com/moshez/penguin-bit-by-bit/blob/master/

dynamic_penguin.ipynb
[5] https://opensource.com/article/20/4/install-python-linux
[6] https://opensource.com/article/19/5/python-3-default-mac
[7] https://opensource.com/article/19/8/how-install-python-

windows
[8] https://git-scm.com/download
[9] https://opensource.com/article/19/6/python-virtual-

environments-mac
[10] https://docs.python.org/3/library/asyncio-eventloop.html
[11] https://opensource.com/article/20/3/treq-python
[12] https://kenney.nl/
[13] https://en.wikipedia.org/wiki/Linear_interpolation
[14] https://en.wikipedia.org/wiki/Collision_detection
[15] https://docs.python.org/3/library/functions.html#setattr
[16] https://docs.python.org/3/library/stdtypes.

html#definition.__name__

Appendix
Here is the full source code of our utility library. It provides
some interesting concepts to make the game board work. For
more on how it does that, read about collision detection [14],
setattr [15]. and the __name__ attribute [16].

def set_in_class(klass):

 def retval(func):

 setattr(klass, func.__name__, func)

 return func

 return retval

def smooth_step(t):

 return t * t * (3 - 2 * t)

_WHICH_OFFSET = dict(

 top='y_offset',

 bottom='y_offset',

 left='x_offset',

 right='x_offset'

)

_WHICH_SIGN = dict(top=1, bottom=-1, left=-1, right=1)

def _effective_side(sprite, direction):

 return (getattr(sprite, direction) -

 _WHICH_SIGN[direction] *

 getattr(sprite, _WHICH_OFFSET[direction], 0))

def _extreme_side(sprite1, sprite2, direction):

 sign = -_WHICH_SIGN[direction]

 return sign * max(sign * _effective_side(sprite1, direction),

 sign * _effective_side(sprite2, direction))

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://ppb.dev/
https://opensource.com/article/19/10/why-love-python
https://opensource.com/article/18/3/getting-started-jupyter-notebooks
https://opensource.com/article/18/3/getting-started-jupyter-notebooks
https://github.com/moshez/penguin-bit-by-bit/blob/master/dynamic_penguin.ipynb
https://github.com/moshez/penguin-bit-by-bit/blob/master/dynamic_penguin.ipynb
https://opensource.com/article/20/4/install-python-linux
https://opensource.com/article/19/5/python-3-default-mac
https://opensource.com/article/19/8/how-install-python-windows
https://opensource.com/article/19/8/how-install-python-windows
https://git-scm.com/download
https://opensource.com/article/19/6/python-virtual-environments-mac
https://opensource.com/article/19/6/python-virtual-environments-mac
https://docs.python.org/3/library/asyncio-eventloop.html
https://opensource.com/article/20/3/treq-python
https://kenney.nl/
https://en.wikipedia.org/wiki/Linear_interpolation
https://en.wikipedia.org/wiki/Collision_detection
https://docs.python.org/3/library/functions.html#setattr
https://docs.python.org/3/library/stdtypes.html#definition.__name__
https://docs.python.org/3/library/stdtypes.html#definition.__name__
https://en.wikipedia.org/wiki/Collision_detection
https://docs.python.org/3/library/functions.html#setattr
https://docs.python.org/3/library/stdtypes.html#definition.__name__

12 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

CREATE A SLIDE DECK USING JUPYTER NOTEBOOKS .

THERE ARE MANY OPTIONS when it comes to creat-
ing slides for a presentation. There

are straightforward ways, and generating slides directly from
Jupyter [1] is not one of them. But I was never one to do
things the easy way. I also have high expectations that no
other slide-generation software quite meets.

Why transition from slides to Jupyter?
I want four features in my presentation software:

1. An environment where I can run the source code to check
for errors

2. A way to include speaker notes but hide them during the
presentation

3. To give attendees a useful handout for reading
4. To give attendees a useful handout for exploratory learning

There is nothing more uncomfortable about giving a talk than
having someone in the audience point out that there is a
coding mistake on one of my slides. Often, it’s misspelling a
word, forgetting a return statement, or doing something else
that becomes invisible as soon as I leave my development
environment, where I have a linter [2] running to catch these
mistakes.

After having one too many of these moments, I decided
to find a way to run the code directly from my slide editor to
make sure it is correct. There are three “gotchas” I needed to
consider in my solution:

• A lot of code is boring. Nobody cares about three slides
worth of import statements, and my hacks to mock out the
socket module distract from my point. But it’s essential that
I can test the code without creating a network outage.

• Including boilerplate code is almost as boring as hearing
me read words directly off of the slide. We have all heard
(or even given) talks where there are three bullet points,

and the presenter reads them verbatim. I try to avoid this
behavior by using speaker notes.

• There is nothing more annoying to the audience when the
talk’s reference material doesn’t have any of the speaker
notes. So I want to generate a beautiful handout contain-
ing all of my notes and the slides from the same source.
Even better, I don’t want to have slides on one handout
and a separate GitHub repository for the source code.

As is often the case, to solve this issue, I found myself reaching
for JupyterLab [3] and its notebook management capabilities.

Using Jupyter Notebooks for presentations
I begin my presentations by using Markdown and code
blocks in a Jupyter Notebook, just like I would for anything
else in JupyterLab. I write out my presentation using sepa-
rate Markdown sections for the text I want to show on the
slides and for the speaker notes. Code snippets go into their
own blocks, as you would expect.

Because you can add a “tag” to cells, I tag any cell that has
“boring” code as no_markdown.

(Moshe Zadka, CC BY-SA 4.0)

Create a slide deck
using Jupyter Notebooks
Jupyter may not be the most straightforward way to create presentation
slides and handouts, but it affords more control than simpler options.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://jupyter.org/
https://opensource.com/article/19/5/python-flake8
https://jupyterlab.readthedocs.io/en/stable/index.html
https://creativecommons.org/licenses/by-sa/4.0/

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 13

. CREATE A SLIDE DECK USING JUPYTER NOTEBOOKS

Then I convert my Notebook to Markdown with:

$ jupyter nbconvert presentation.ipynb --to markdown

--TagRemovePreprocessor.remove_cell_tags='{"no_markdown"}'

--output build/presentation.md

There are ways to convert Markdown to slides [4]—but I
have no idea how to use any of them and even less desire to
learn. Plus, I already have my favorite presentation-creation
tool: Beamer [5].

But Beamer requires custom LaTeX, and that is not
usually generated when you convert Markdown to LaTeX.
Thankfully, one Markdown implementation–Pandoc Mark-
down [6]—has a feature that lets me do what I want. Its
raw_attribute [7] extension allows including “raw” bits of the
target format in the Markdown.

This means if I run pandoc on the Markdown export from
a notebook that includes raw_attribute LaTeX bits, I can
have as much control over the LaTeX as I want:

$ pandoc --listings -o build/presentation.tex build/presentation.md

The --listings makes pandoc use LaTeX’s listings pack-
age, which makes code look much prettier. Putting those two
pieces together, I can generate LaTeX from the notebook.

Through a series of conversion steps, I was able to hide
the parts I wanted to hide by using:

• LaTeX raw_attribute bits inside Jupyter Notebook’s
Markdown cells

• Tagging boring cells as no_markdown
• Jupyter’s “nbconvert” to convert the notebook to Markdown
• Pandoc to convert the Markdown to LaTeX while interpo-

lating the raw_attribute bits
• Beamer to convert the Pandoc output to a PDF slide-deck
• Beamer’s beamerarticle mode

All combined with a little bit of duct-tape, in the form of a
UNIX shell script, to produce slide-deck creation software.
Ultimately, this pipeline works for me. With these tools, or
similar, and some light UNIX scripting, you can make your
own customized slide created pipeline, optimized to your
needs and preferences.

Links
[1] https://jupyter.org/
[2] https://opensource.com/article/19/5/python-flake8
[3] https://jupyterlab.readthedocs.io/en/stable/index.html
[4] https://opensource.com/article/18/5/markdown-slide-

generators
[5] https://opensource.com/article/19/1/create-presentations-

beamer
[6] https://pandoc.org/MANUAL.html#pandocs-markdown
[7] https://pandoc.org/MANUAL.html#extension-raw_attribute

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/18/5/markdown-slide-generators
https://opensource.com/article/19/1/create-presentations-beamer
https://pandoc.org/MANUAL.html#pandocs-markdown
https://pandoc.org/MANUAL.html#extension-raw_attribute
https://jupyter.org/
https://opensource.com/article/19/5/python-flake8
https://jupyterlab.readthedocs.io/en/stable/index.html
https://opensource.com/article/18/5/markdown-slide-generators
https://opensource.com/article/18/5/markdown-slide-generators
https://opensource.com/article/19/1/create-presentations-beamer
https://opensource.com/article/19/1/create-presentations-beamer
https://pandoc.org/MANUAL.html#pandocs-markdown
https://pandoc.org/MANUAL.html#extension-raw_attribute

14 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

BUILD A REMOTE MANAGEMENT CONSOLE USING PYTHON AND JUPYTER NOTEBOOKS

SECURE SHELL (SSH) is a powerful tool for
remote administration, but

it lacks some niceties. Writing a full-fledged remote ad-
ministration console sounds like it would be a lot of work.
Surely, someone in the open source community has al-
ready written something?

They have, and its name is Jupyter [1]. You might think
Jupyter is one of those tools data scientists use to analyze
trends in ad clicks over a week or something. This is not
wrong—they do, and it is a great tool for that. But that is just
scratching its surface.

About SSH port forwarding
Sometimes, there is a server that you can SSH into over
port 22. There is no reason to assume you can connect
to any other port. Maybe you are SSHing through another
“jumpbox” server that has more access or there are host or
network firewalls that restrict ports. There are good reasons
to restrict IP ranges for access, of course. SSH is a secure
protocol for remote management, but allowing anyone to
connect to any port is quite unnecessary.

Here is an alternative: Run a simple SSH command with
port forwarding to forward a local port to a remote local con-
nection. When you run an SSH port-forwarding command like
-L 8111:127.0.0.1:8888, you are telling SSH to forward your
local port 8111 to what the remote host thinks 127.0.0.1:8888
is. The remote host thinks 127.0.0.1 is itself.

Just like on Sesame Street, “here” is a subtle word.

Click to view video.

The address 127.0.0.1 is how you spell “here” to the
network.

Learn by doing
This might sound confusing, but running this is less com-
plicated than explaining it:

$ ssh -L 8111:127.0.0.1:8888 moshez@172.17.0.3

Linux 6ad096502e48 5.4.0-40-generic # 44-Ubuntu SMP Tue Jun 23

00:01:04 UTC 2020 x86_64

The programs included with the Debian GNU/Linux system are free

software; the exact distribution terms for each program are

described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the

extent permitted by applicable law.

Last login: Wed Aug 5 22:03:25 2020 from 172.17.0.1

$ jupyter/bin/jupyter lab --ip=127.0.0.1

[I 22:04:29.771 LabApp] JupyterLab application directory is

/home/moshez/jupyter/share/jupyter/lab

[I 22:04:29.773 LabApp] Serving notebooks from local directory:

/home/moshez

[I 22:04:29.773 LabApp] Jupyter Notebook 6.1.1 is running at:

[I 22:04:29.773 LabApp] http://127.0.0.1:8888/

?token=df91012a36dd26a10b4724d618b2e78cb99013b36bb6a0d1

<MORE STUFF SNIPPED>

Port-forward 8111 to 127.0.0.1 and start Jupyter on the re-
mote host that’s listening on 127.0.0.1:8888.

Now you need to understand that Jupyter is lying. It
thinks you need to connect to port 8888, but you forward-
ed that to port 8111. So, after you copy the URL to your
browser, but before clicking Enter, modify the port from
8888 to 8111:

Build a remote management console
using Python and Jupyter Notebooks
Turn Jupyter into a remote administration console.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://jupyter.org/
https://youtu.be/9m-kbBamg_U

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 15

. BUILD A REMOTE MANAGEMENT CONSOLE USING PYTHON AND JUPYTER NOTEBOOKS

(Moshe Zadka, CC BY-SA 4.0)

There it is: your remote management console. As you can
see, there is a “Terminal” icon at the bottom. Click it to get a
terminal:

(Moshe Zadka, CC BY-SA 4.0)

You can run a command. Creating a file will show it in the file
browser on the side. You can click on that file to open it in an
editor that is running locally:

(Moshe Zadka, CC BY-SA 4.0)

You can also download, rename, or delete files:

(Moshe Zadka, CC BY-SA 4.0)

Clicking on the little Up arrow will let you upload files. Why
not upload the screenshot above?

(Moshe Zadka, CC BY-SA 4.0)

As a nice final tidbit, Jupyter lets you view the remote images
directly by double-clicking on them.

Oh, right, and if you want to do systems automation using
Python, you can also use Jupyter to open a notebook.

So the next time you need to remotely manage a firewalled
environment, why not use Jupyter?

Links
[1] https://jupyter.org/

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://jupyter.org/

16 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

EDIT IMAGES WITH JUPYTER AND PYTHON .

RECENTLY, MY KID wanted to make a
coloring page from

a favorite cartoon. My first thought was to use one of the
open source programs on Linux that manipulate images,
but then I remembered I have no idea how to use any of
them. Luckily, I know how to use Jupyter and Python [1].

How hard can it be, I figured, to use Jupyter for that?
To follow along, you need to have a modern version

of Python (if you’re a macOS user, you can follow this
guide [2]), then install and open Jupyter Labs, which you
can learn more about here [3], and Pillow [4], a friendly
fork of the Python Imaging Library (PIL), with:

$ python -V

Python 3.8.5

$ pip install jupyterlab pillow

Installation process ommitted

$ jupyter lab

Imagine you want to make a coloring page with an image
of a deer. The first step is probably to download a picture of
a deer and save it locally. Beware of images with dubious
copyright status; it’s best to use something with a Creative
Commons [5] or other open access license. For this exam-
ple, I used an openly licensed image from Unsplash [6] and
named it deer.jpg.

Once you’re in Jupyter Lab, start by importing PIL:

from PIL import Image

With these preliminaries out of the way, open the image then
look at the image size:

pic = Image.open("deer.jpg")

pic.size

(3561, 5342)

Wow, this is a bit of sticker shock—high-resolution pictures
are fine if you want to make a delightful book about deer,
but this is probably too big for a homemade coloring book
page. Scale it waaaaaaay down. (This kindness is important
so that this article loads fast in your browser, too!)

x, y = pic.size

x //= 10

y //= 10

smaller = pic.resize((x, y))

This reduced the scale of the image by 10. See what that
looks like:

smaller

(Max Saeling, Unsplash License)

Beautiful! Majestic and remote, this deer should be a breeze
for an edge-detection algorithm. Speaking of which, yes,
that’s the next step. You want to clean up the image so color-
ing will be is a breeze, and thankfully there’s an algorithm for
that. Do some edge detection:

from PIL import ImageFilter

edges = smaller.filter(ImageFilter.FIND_EDGES)

edges

Edit images with Jupyter and Python
Who needs to learn an image-editing application when you can
do the job with open source tools you already know?

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/python
https://opensource.com/article/19/5/python-3-default-mac
https://opensource.com/article/19/5/jupyterlab-python-developers-magic
https://pillow.readthedocs.io/en/stable/installation.html
https://creativecommons.org/
https://unsplash.com/photos/Xu1xO3mpr1I
https://unsplash.com/photos/Xu1xO3mpr1I

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 17

. EDIT IMAGES WITH JUPYTER AND PYTHON

(Moshe Zadka, CC BY-SA 4.0)
This is probably the most important step. It removes all the extra-
neous details and leaves clear lines. The color is a little weird,
but this is not a hard problem to solve. Split the image into its
color bands, and choose the one where the lines are crispest:

bands = edges.split()

bands[0]

(Moshe Zadka, CC BY-SA 4.0)

The lines are clear now, but this is not a good image to print
because your printer will run out of ink, and your kid will not
be happy coloring on black. So invert the colors. While you’re
at it, snap the colors to max-black or max-white to make the
lines even crisper by using a lambda function call [7]:

outline = bands[0].point(lambda x: 255 if x<100 else 0)

outline

(Moshe Zadka, CC BY-SA 4.0)
The original image had a lot of nature that I mercilessly
cleared. Now there’s a lot of empty space, so crop the picture
to the essentials:

outline.crop((10, 200, 300, 400))

(Moshe Zadka, CC BY-SA 4.0)

All that’s left is to save the picture as something easy to print,
like a PDF:

outline.save("deer.pdf")

I’ll let you figure out how to print from Linux [8].
Have fun making homemade coloring books for your kids!

Links
[1] https://opensource.com/resources/python
[2] https://opensource.com/article/19/5/python-3-default-mac
[3] https://opensource.com/article/19/5/jupyterlab-python-

developers-magic
[4] https://pillow.readthedocs.io/en/stable/installation.html
[5] https://creativecommons.org/
[6] https://unsplash.com/photos/Xu1xO3mpr1I
[7] https://opensource.com/article/19/10/python-programming-

paradigms
[8] https://opensource.com/article/18/11/choosing-printer-linux

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/article/19/10/python-programming-paradigms
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/article/18/11/choosing-printer-linux
https://opensource.com/resources/python
https://opensource.com/article/19/5/python-3-default-mac
https://opensource.com/article/19/5/jupyterlab-python-developers-magic
https://opensource.com/article/19/5/jupyterlab-python-developers-magic
https://pillow.readthedocs.io/en/stable/installation.html
https://creativecommons.org/
https://unsplash.com/photos/Xu1xO3mpr1I
https://opensource.com/article/19/10/python-programming-paradigms
https://opensource.com/article/19/10/python-programming-paradigms
https://opensource.com/article/18/11/choosing-printer-linux

18 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

SOME THINGS ABOUT THE RUBY community have
always impressed me. Two

examples are the commitment to testing and the emphasis
on making it easy to get started. The best example of both is
Ruby Koans [1], where you learn Ruby by fixing tests.

With the amazing tools we have for Python, we should
be able to do something even better. We can. Using Jupy-
ter Notebook [2], PyHamcrest [3], and just a little bit of duct
tape-like code, we can make a tutorial that includes teach-
ing, code that works, and code that needs fixing.

First, some duct tape. Usually, you do your tests using some
nice command-line test runner, like pytest [4] or virtue [5].
Usually, you do not even run it directly. You use a tool like
tox [6] or nox [7] to run it. However, for Jupyter, you need to
write a little harness that can run the tests directly in the cells.

Luckily, the harness is short, if not simple:

import unittest

def run_test(klass):

 suite = unittest.TestLoader().loadTestsFromTestCase(klass)

 unittest.TextTestRunner(verbosity=2).run(suite)

 return klass

Now that the harness is done, it’s time for the first exercise.
In teaching, it is always a good idea to start small with an

easy exercise to build confidence.
So why not fix a really simple test?

@run_test

class TestNumbers(unittest.TestCase):

 def test_equality(self):

 expected_value = 3 # Only change this line

 self.assertEqual(1+1, expected_value)

 test_equality (__main__.TestNumbers) ... FAIL

 ===

 FAIL: test_equality (__main__.TestNumbers)

 Traceback (most recent call last):

 Fi le "<ipython-input-7-5ebe25bc00f3>", line 6, in test_

equality

 self.assertEqual(1+1, expected_value)

 AssertionError: 2 != 3

 Ran 1 test in 0.002s

 FAILED (failures=1)

Only change this line is a useful marker for students. It
shows exactly what needs to be changed. Otherwise, stu-
dents could fix the test by changing the first line to return.

In this case, the fix is easy:

@run_test

class TestNumbers(unittest.TestCase):

 def test_equality(self):

 expected_value = 2 # Fixed this line

 self.assertEqual(1+1, expected_value)

 test_equality (__main__.TestNumbers) ... ok

 Ran 1 test in 0.002s

 OK

Quickly, however, the unittest library’s native assertions
will prove lacking. In pytest, this is fixed with rewriting
the bytecode in assert to have magical properties and
all kinds of heuristics. This would not work easily in a Ju-
pyter notebook. Time to dig out a good assertion library:
PyHamcrest:

from hamcrest import *

@run_test

class TestList(unittest.TestCase):

 def test_equality(self):

 things = [1,

 5, # Only change this line

 3]

 assert_that(things, has_items(1, 2, 3))

 test_equality (__main__.TestList) ... FAIL

Teach Python
with Jupyter Notebooks
With Jupyter, PyHamcrest, and a little duct tape of a testing harness,
you can teach any Python topic that is amenable to unit testing.

TEACH PYTHON WITH JUPYTER NOTEBOOKS .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/edgecase/ruby_koans
https://jupyter.org/
https://github.com/hamcrest/PyHamcrest
https://docs.pytest.org/en/stable/
https://github.com/Julian/Virtue
https://tox.readthedocs.io/en/latest/
https://nox.thea.codes/en/stable/

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 19

 ===

 FAIL: test_equality (__main__.TestList)

 Traceback (most recent call last):

 Fi le "<ipython-input-11-96c91225ee7d>", line 8, in test_

equality

 assert_that(things, has_items(1, 2, 3))

 AssertionError:

 Ex pected: (a sequence containing <1> and a sequence

containing <2> and a sequence containing <3>)

 but: a sequence containing <2> was <[1, 5, 3]>

 Ran 1 test in 0.004s

 FAILED (failures=1)

PyHamcrest is not just good at flexible assertions; it is also
good at clear error messages. Because of that, the problem
is plain to see: [1, 5, 3] does not contain 2, and it looks ugly
besides:

@run_test

class TestList(unittest.TestCase):

 def test_equality(self):

 things = [1,

 2, # Fixed this line

 3]

 assert_that(things, has_items(1, 2, 3))

 test_equality (__main__.TestList) ... ok

 Ran 1 test in 0.001s

 OK

With Jupyter, PyHamcrest, and a little duct tape of a testing
harness, you can teach any Python topic that is amenable
to unit testing.

For example, the following can help show the differences
between the different ways Python can strip whitespace from
a string:

source_string = " hello world "

@run_test

class TestList(unittest.TestCase):

 # This one is a freebie: it already works!

 def test_complete_strip(self):

 result = source_string.strip()

 assert_that(result,

 all_of(starts_with("hello"), ends_

with("world")))

 def test_start_strip(self):

 result = source_string # Only change this line

 assert_that(result,

 all_of(starts_with("hello"), ends_

with("world ")))

 def test_end_strip(self):

 result = source_string # Only change this line

 assert_that(result,

 all_of(starts_with(" hello"), ends_

with("world")))

 test_complete_strip (__main__.TestList) ... ok

 test_end_strip (__main__.TestList) ... FAIL

 test_start_strip (__main__.TestList) ... FAIL

 ===

 FAIL: test_end_strip (__main__.TestList)

 Traceback (most recent call last):

 Fi le "<ipython-input-16-3db7465bd5bf>", line 19, in

test_end_strip

 assert_that(result,

 AssertionError:

 Expected: (a string starting with ' hello' and a string

ending with 'world')

 but: a string ending with 'world' was ' hello world '

 ===

 FAIL: test_start_strip (__main__.TestList)

 Traceback (most recent call last):

 Fi le "<ipython-input-16-3db7465bd5bf>", line 14, in test_

start_strip

 assert_that(result,

 AssertionError:

 Ex pected: (a string starting with 'hello' and a string

ending with 'world ')

 but: a string starting with 'hello' was ' hello world '

 Ran 3 tests in 0.006s

 FAILED (failures=2)

Ideally, students would realize that the methods .lstrip()
and .rstrip() will do what they need. But if they do not and
instead try to use .strip() everywhere:

. TEACH PYTHON WITH JUPYTER NOTEBOOKS

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

20 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

TEACH PYTHON WITH JUPYTER NOTEBOOKS .

They would get a different error message that shows too
much space has been stripped:

source_string = " hello world "

@run_test

class TestList(unittest.TestCase):

 # This one is a freebie: it already works!

 def test_complete_strip(self):

 result = source_string.strip()

 assert_that(result,

 all_of(starts_with("hello"), ends_

with("world")))

 def test_start_strip(self):

 result = source_string.lstrip() # Fixed this line

 assert_that(result,

 all_of(starts_with("hello"), ends_

with("world ")))

 def test_end_strip(self):

 result = source_string.rstrip() # Fixed this line

 assert_that(result,

 all_of(starts_with(" hello"), ends_

with("world")))

 test_complete_strip (__main__.TestList) ... ok

 test_end_strip (__main__.TestList) ... ok

 test_start_strip (__main__.TestList) ... ok

 Ran 3 tests in 0.005s

 OK

In a more realistic tutorial, there would be more examples
and more explanations. This technique using a notebook
with some examples that work and some that need fix-
ing can work for real-time teaching, a video-based class,
or even, with a lot more prose, a tutorial the student can
complete on their own.

Now go out there and share your knowledge!

Links
[1] https://github.com/edgecase/ruby_koans
[2] https://jupyter.org/
[3] https://github.com/hamcrest/PyHamcrest
[4] https://docs.pytest.org/en/stable/
[5] https://github.com/Julian/Virtue
[6] https://tox.readthedocs.io/en/latest/
[7] https://nox.thea.codes/en/stable/

source_string = " hello world "

@run_test

class TestList(unittest.TestCase):

 # This one is a freebie: it already works!

 def test_complete_strip(self):

 result = source_string.strip()

 assert_that(result,

 all_of(starts_with("hello"), ends_

with("world")))

 def test_start_strip(self):

 result = source_string.strip() # Changed this line

 assert_that(result,

 all_of(starts_with("hello"), ends_

with("world ")))

 def test_end_strip(self):

 result = source_string.strip() # Changed this line

 assert_that(result,

 all_of(starts_with(" hello"), ends_

with("world")))

 test_complete_strip (__main__.TestList) ... ok

 test_end_strip (__main__.TestList) ... FAIL

 test_start_strip (__main__.TestList) ... FAIL

 ===

 FAIL: test_end_strip (__main__.TestList)

 --

 Traceback (most recent call last):

 Fi le "<ipython-input-17-6f9cfa1a997f>", line 19, in

test_end_strip

 assert_that(result,

 AssertionError:

 Expected: (a string starting with ' hello' and a string

ending with 'world')

 but: a string starting with ' hello' was 'hello world'

 ==

 FAIL: test_start_strip (__main__.TestList)

 --

 Traceback (most recent call last):

 Fi le "<ipython-input-17-6f9cfa1a997f>", line 14, in test_

start_strip

 assert_that(result,

 AssertionError:

 Expected: (a string starting with 'hello' and a string

ending with 'world ')

 but: a string ending with 'world ' was 'hello world'

 Ran 3 tests in 0.007s

 FAILED (failures=2)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/edgecase/ruby_koans
https://jupyter.org/
https://github.com/hamcrest/PyHamcrest
https://docs.pytest.org/en/stable/
https://github.com/Julian/Virtue
https://tox.readthedocs.io/en/latest/
https://nox.thea.codes/en/stable/

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 21

PYTHON [1] has incredibly scalable options for ex-
ploring data. With Pandas [2] or Dask [3],

you can scale Jupyter [4] up to big data. But what about
small data? Personal data? Private data?

JupyterLab and Jupyter Notebook provide a great environ-
ment to scrutinize my laptop-based life.

My exploration is powered by the fact that almost every
service I use has a web application programming interface
(API). I use many such services: a to-do list, a time tracker,
a habit tracker, and more. But there is one that almost ev-
eryone uses: a calendar. The same ideas can be applied to
other services, but calendars have one cool feature: an open
standard that almost all web calendars support: CalDAV.

Parsing your calendar with Python in Jupyter
Most calendars provide a way to export into the CalDAV
format. You may need some authentication for access-
ing this private data. Following your service’s instructions
should do the trick. How you get the credentials depends
on your service, but eventually, you should be able to
store them in a file. I store mine in my root directory in a
file called .caldav:

import os

with open(os.path.expanduser("~/.caldav")) as fpin:

 username, password = fpin.read().split()

Never put usernames and passwords directly in notebooks!
They could easily leak with a stray git push.

The next step is to use the convenient PyPI caldav [5] li-
brary. I looked up the CalDAV server for my email service
(yours may be different):

import caldav

client = caldav.DAVClient(url="https://caldav.fastmail.com/dav/",

username=username, password=password)

CalDAV has a concept called the principal. It is not import-
ant to get into right now, except to know it’s the thing you use
to access the calendars:

principal = client.principal()

calendars = principal.calendars()

Calendars are, literally, all about time. Before accessing
events, you need to decide on a time range. One week
should be a good default:

from dateutil import tz

import datetime

now = datetime.datetime.now(tz.tzutc())

since = now - datetime.timedelta(days=7)

Most people use more than one calendar, and most people
want all their events together. The itertools.chain.from_
iterable makes this straightforward:

import itertools

raw_events = list(

 itertools.chain.from_iterable(

 calendar.date_search(start=since, end=now, expand=True)

 for calendar in calendars

)

)

Reading all the events into memory is important, and doing
so in the API’s raw, native format is an important practice.
This means that when fine-tuning the parsing, analyzing,
and displaying code, there is no need to go back to the API
service to refresh the data.

But “raw” is not an understatement. The events come
through as strings in a specific format:

print(raw_events[12].data)

 BEGIN:VCALENDAR

 VERSION:2.0

 PRODID:-//CyrusIMAP.org/Cyrus

 3.3.0-232-g4bdb081-fm-20200825.002-g4bdb081a//EN

 BEGIN:VEVENT

 DTEND:20200825T230000Z

Improve your time management
with Jupyter
Discover how you are spending time by parsing your calendar with Python in Jupyter.

. IMPROVE YOUR TIME MANAGEMENT WITH JUPYTER

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/python
https://pandas.pydata.org/
https://dask.org/
https://jupyter.org/
https://pypi.org/project/caldav/

22 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

Calendar events always have a start, but they sometimes have
an “end” and sometimes a “duration.” Some careful parsing
logic can harmonize both into the same Python objects:

def from_calendar_event_and_timezone(event, timezone):

 contents = parse_event(event)

 start = get_piece(contents, "dtstart")

 summary = get_piece(contents, "summary")

 try:

 end = get_piece(contents, "dtend")

 except KeyError:

 end = start + get_piece(contents, "duration")

 return Event(start=start, end=end, summary=summary,

timezone=timezone)

Since it is useful to have the events in your local time zone
rather than UTC, this uses the local timezone:

my_timezone = tz.gettz()

from_calendar_event_and_timezone(raw_events[12], my_timezone)

 Event(start=datetime.datetime(2020, 8, 25, 22, 0,

tzinfo=tzutc()), end=datetime.datetime(2020, 8, 25, 23, 0,

 tzinfo=tzutc()), timezone=tzfile('/etc/localtime'),

 summary='Busy')

Now that the events are real Python objects, they really
should have some additional information. Luckily, it is possi-
ble to add methods retroactively to classes.

But figuring which day an event happens is not that obvi-
ous. You need the day in the local timezone:

def day(self):

 offset = self.timezone.utcoffset(self.start)

 fixed = self.start + offset

 return fixed.date()

Event.day = property(day)

print(_.day)

 2020-08-25

Events are always represented internally as start/end, but
knowing the duration is a useful property. Duration can also
be added to the existing class:

def duration(self):

 return self.end - self.start

Event.duration = property(duration)

print(_.duration)

 1:00:00

Now it is time to convert all events into useful Python objects:

all_events = [from_calendar_event_and_timezone(raw_event,

my_timezone)

 for raw_event in raw_events]

 DTSTAMP:20200825T181915Z

 DTSTART:20200825T220000Z

 SUMMARY:Busy

 UID:

 13 02728i-040000008200E00074C5B7101A82E00800000000D939773 \

EA578D601000000000

 000000010000000CD71CC3393651B419E9458134FE840F5

 END:VEVENT

 END:VCALENDAR

Luckily, PyPI comes to the rescue again with another helper
library, vobject [6]:

import io

import vobject

def parse_event(raw_event):

 data = raw_event.data

 parsed = vobject.readOne(io.StringIO(data))

 contents = parsed.vevent.contents

 return contents

parse_event(raw_events[12])

 {'dtend': [<DTEND{}2020-08-25 23:00:00+00:00>],

 'dtstamp': [<DTSTAMP{}2020-08-25 18:19:15+00:00>],

 'dtstart': [<DTSTART{}2020-08-25 22:00:00+00:00>],

 'summary': [<SUMMARY{}Busy>],

 'uid': [<UID{}1302728i-040000008200E00074C5B7101A82E0080 \

0000000D939773EA578D601000000000000000010000000CD \

71CC3393651B419E9458134FE840F5>]}

Well, at least it’s a little better.
There is still some work to do to convert it to a reasonable

Python object. The first step is to have a reasonable Python
object. The attrs [7] library provides a nice start:

import attr

from __future__ import annotations

@attr.s(auto_attribs=True, frozen=True)

class Event:

 start: datetime.datetime

 end: datetime.datetime

 timezone: Any

 summary: str

Time to write the conversion code!
The first abstraction gets the value from the parsed dictio-

nary without all the decorations:

def get_piece(contents, name):

 return contents[name][0].value

get_piece(_, "dtstart")

 datetime.datetime(2020, 8, 25, 22, 0, tzinfo=tzutc())

IMPROVE YOUR TIME MANAGEMENT WITH JUPYTER .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://pypi.org/project/vobject/
https://opensource.com/article/19/5/python-attrs

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 23

. IMPROVE YOUR TIME MANAGEMENT WITH JUPYTER

def __html__(self):

 offset = my_timezone.utcoffset(self.start)

 fixed = self.start + offset

 start_str = str(fixed).split("+")[0]

 summary = self.summary

 if summary != "Busy":

 summary = "<REDACTED>"

 return f"{summary[:30]} -- {start_str} ({self.duration})"

Event.__html__ = __html__

In the interest of brevity, the report will be sliced into one
day’s worth.

import chameleon

from IPython.display import HTML

template = chameleon.PageTemplate(template_content)

html = template(items=itertools.islice(events_by_day.items(), 3, 4))

HTML(html)

When rendered, it will look something like this:
2020-08-25
• <REDACTED> -- 2020-08-25 08:30:00 (0:45:00)
• <REDACTED> -- 2020-08-25 10:00:00 (1:00:00)
• <REDACTED> -- 2020-08-25 11:30:00 (0:30:00)
• <REDACTED> -- 2020-08-25 13:00:00 (0:25:00)
• Busy -- 2020-08-25 15:00:00 (1:00:00)
• <REDACTED> -- 2020-08-25 15:00:00 (1:00:00)
• <REDACTED> -- 2020-08-25 19:00:00 (1:00:00)
• <REDACTED> -- 2020-08-25 19:00:12 (1:00:00)

Endless options with Python and Jupyter
This only scratches the surface of what you can do by pars-
ing, analyzing, and reporting on the data that various web
services have on you.

Why not try it with your favorite service?

Links
[1] https://opensource.com/resources/python
[2] https://pandas.pydata.org/
[3] https://dask.org/
[4] https://jupyter.org/
[5] https://pypi.org/project/caldav/
[6] https://pypi.org/project/vobject/
[7] https://opensource.com/article/19/5/python-attrs
[8] https://chameleon.readthedocs.io/en/latest/

All-day events are a special case and probably less useful
for analyzing life. For now, you can ignore them:

ignore all-day events

all_events = [event for event in all_events

if not type(event.start) == datetime.date]

Events have a natural order—knowing which one happened
first is probably useful for analysis:

all_events.sort(key=lambda ev: ev.start)

Now that the events are sorted, they can be broken into days:

import collections

events_by_day = collections.defaultdict(list)

for event in all_events:

 events_by_day[event.day].append(event)

And with that, you have calendar events with dates, duration,
and sequence as Python objects.

Reporting on your life in Python
Now it is time to write reporting code! It is fun to have
eye-popping formatting with proper headers, lists, important
things in bold, etc.

This means HTML and some HTML templating. I like to
use Chameleon [8]:

template_content = """

<html><body>

<div tal:repeat="item items">

<h2 tal:content="item[0]">Day</h2>

 < li tal:repeat="event item[1]">

Thing

</div>

</body></html>"""

One cool feature of Chameleon is that it will render objects
using its html method. I will use it in two ways:

• The summary will be in bold
• For most events, I will remove the summary (since this is

my personal information)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/python
https://pandas.pydata.org/
https://dask.org/
https://jupyter.org/
https://pypi.org/project/caldav/
https://pypi.org/project/vobject/
https://opensource.com/article/19/5/python-attrs
https://chameleon.readthedocs.io/en/latest/
https://chameleon.readthedocs.io/en/latest/

24 6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM

EXPLORE THE WORLD OF PROGRAMMING WITH JUPYTER .

JUPYTERLAB is the next-generation web-
based Jupyter [1] user inter-

face. It allows you to work with Jupyter Notebooks [2], as
well as editors, terminals, and more, to produce interactive
documents for data science, statistical modeling, data visu-
alization, and more.

It has native viewers for PDF, CSV, JSON, images, and
more. It is also extensible to support other formats.

JupyterLab’s left sidebar has tabs for using it as a file
manager, a Jupyter kernel manager, or a Jupyter Notebook
metadata editor.

Writing code in Jupyter Notebooks enables an interactive
development experience. You can write code, see the re-
sults, and modify the code—all without restarting your pro-
cess or losing your in-memory data. This is a great fit for
exploratory programming when you are not sure what your
end result will look like.

Exploration is common in data science; after all, sci-
ence is the process of finding out answers not known
before. But exploration is not limited to data science. Ju-
pyter works well for system diagnostics and automation
where you don’t know the answer or solution in advance.
Whenever feedback is useful for the next step, whether
it is image manipulation, analyzing your exercise data,
or writing games, Jupyter’s bias toward exploration can
be helpful.

Jupyter and JupyterLab are great tools, so this JupyterLab
cheat sheet will make it easier for you to get started.

Links
[1] https://jupyter.org/
[2] https://opensource.com/article/18/3/getting-started-jupyter-

notebooks

Explore the world of
programming with Jupyter

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://jupyter.org/
https://opensource.com/article/18/3/getting-started-jupyter-notebooks
https://jupyter.org/
https://opensource.com/article/18/3/getting-started-jupyter-notebooks
https://opensource.com/article/18/3/getting-started-jupyter-notebooks

6 SURPRISING WAYS TO USE JUPYTER ... CC BY-SA 4.0 ... OPENSOURCE.COM 25

. JUPYTERLAB CHEAT SHEET

JupyterLab Cheat Sheet By Moshe Zadka

JupyterLab is a web-based Jupyter user interface.

Install

Install JupyterLab with pip python -m pip install jupyterlab

Install JupyterLab with conda conda install -c conda-forge jupyterlab

Run

$ jupyter lab

--ip=<IP> Bind to the given IP port

--port=<PORT> Use a different port

--LabApp.token=<TOKEN> Use specific token (do not auto-generate)

$ jupyter notebook list

--json One JSON per line

--jsonlist A JSON list

Transforming notebooks

Install nbconvert $ python -m pip install nbconvert

Convert to {html, markdown, latex, script} $ jupyter nbconvert \

 –to <FORMAT> my.ipynb

Keyboard shortcuts Command mode

Ctrl+Shift+] Next tab Up-arrow Move one cell up

Ctrl+Shift+[Previous tab Down-arrow Move one cell down

Ctrl+B Toggle left bar A Add cell above

Shift+Enter Execute cell B Add cell below

Ctrl+S Save notebook C Copy cell

Esc Enter command mode V Paste cell

Ctrl+Shift+- Split cell at cursor X Cut cell

Z Undo cell operation

Shift+L Toggle cell line numbers

opensource.com Twitter @opensourceway • Fosstodon.org/@osdc CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://twitter.com/opensourceway
https://fosstodon.org/@osdc
https://creativecommons.org/licenses/by-sa/4.0/

