
A guide to Kubernetes
for SREs and sysadmins

Opensource.com

http://www.opensource.com

OPENSOURCE.COM .

2 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: opensource.com/story

Email us: open@opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
http://opensource.com
http://opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 3

. ABOUT THE AUTHOR

JESS CHERRY Tech nomad, working in about anything I
can find.

Evangelist of silo prevention in the IT
space, the importance of information
sharing with all teams.

Believer in educating all and open
source development.

Lover of all things tech.All about K8s,
chaos and anything new and shiny I
can find!

Follow me at @alynderthered1

JESS CHERRY

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://twitter.com/alynderthered1

CONTENTS .

4 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

INTRODUCTION

PREFACE

REAL WORLD KUBERNETES

APPENDIX

TOOLCHAIN OVERVIEW

PACKAGE MANAGEMENT

KNATIVE

Explore the Kubernetes Ecosystem 5

Getting started with Kubernetes 6

Set up Minishift and run Jenkins on Linux 8
Kubernetes namespaces for beginners 12

9 kubectl commands sysadmins need to know 15
Kubectl Cheat Sheet 19
Speed up administration of Kubernetes clusters with k9s 21

Level up your use of Helm on Kubernetes with Charts 26
How to make a Helm chart in 10 minutes 30
Basic kubectl and Helm commands for beginners 35

Create your first Knative app 38
A step-by-step guide to Knative eventing 43

5 interview questions every Kubernetes job candidate 49
should know
Demystifying namespaces and containers in Linux 51

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. INTRODUCTION

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 5

SINCE ITS INTRODUCTION, KUBERNETES,
has grown to become the defacto standard for container orchestration and
development. It is complex and sometimes complicated, but also wonderfully
extensible and open source, allowing it to play to its core strength—container
orchestration—while allowing a vibrant community of enthusiasts, professionals, and
everyone in between to build tools to extend Kubernetes to fit their needs.

This eBook is a great resource for jumping into Kubernetes. Ben Finkel provides
a concise and helpful introduction to Kubernetes concepts and how to get started
with Kubernetes at home. It’s also a great series of articles by Jessica Cherry,
focusing on getting to know Kubernetes more thoroughly, additional tools that
help make working with Kubernetes easier, and exploration of several Kubernetes
extensions, that open up and extend Kubernetes and take advantage of its power
and flexibility for building and deploying applications and add new functionality.

Overall, this collection is an excellent overview of the ecosystem available around
the most popular and well-known container orchestration system available, helpful
for both beginners new to the Kubernetes world, and veterans who are interested in
learning more about some of the available tools out there.

Explore the Kubernetes
Ecosystem

 BY CHRIS COLLINS

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

6 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

GETTING STARTED WITH KUBERNETES .

ONE OF TODAY’S MOST promising emerging technolo-
gies is paring containers with cluster man-

agement software such as Docker Swarm [1], Apache Me-
sos [2], and the popular Kubernetes [3]. Kubernetes allows
you to create a portable and scalable application deployment
that can be scheduled, managed, and maintained easily. As
an open source project, Kubernetes is continually being up-
dated and improved, and it leads the way among container
cluster management software.

Kubernetes uses various architectural components to de-
scribe the deployments it manages.

• Pods [4] are a group of one or more containers that share
network and storage. The containers in a pod are con-
sidered “tightly coupled,” and they are managed and de-
ployed as a single unit. If an application were deployed in
a more traditional model, the contents of the pod would
always be deployed together on the same machine.

• Nodes [5] represents a worker machine in a Kubernetes
cluster. The worker machine can be either physical or
(more likely) virtual. A node contains all the required ser-
vices to host a pod.

• A cluster always requires a master [6] node, where the
controlling services (known as the master components)
are installed. These services can be distributed on a sin-
gle machine or across multiple machines for redundancy.
They control communications, workload, and scheduling.

• Deployments [7] are a way to declaratively set a state for
your pods or ReplicaSets (groups of pods to be deployed
together). Deployments use a “desired state” format to de-
scribe how the deployment should look, and Kubernetes
handles the actual deployment tasks. Deployments can be
updated, rolled back, scaled, and paused at will.

The following tutorial will explain the basics of creating a
cluster, deploying an app, and creating a proxy, then send
you on your way to learning even more about Kubernetes.

Create a cluster
Begin by using the Kubernetes-provided tutorial [8] to cre-
ate a cluster and deploy an app. This cluster will consist
of a master and one or more nodes. In the first scenar-
io, you’ll create a cluster using a utility called “Minkube,”
which creates and runs a cluster on a local machine. Mini-
kube is great for testing and development. You will also
use the kubectl command, which is installed as part of
the Kubernetes API.

In the interactive terminal, start the Minikube software with
the command:

minikube start

View the cluster information with the command:

kubectl cluster-info

List the available nodes with the command:

kubectl get nodes

The screenshot above shows the output from these com-
mands. Note the only available node is host01, which
is operating as the master (as seen in the cluster-info
output).

Getting started with Kubernetes
 BY BEN FINKEL

Learn the basics of using the open source container management system with this easy tutorial.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tutorials/kubernetes-basics/

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 7

. GETTING STARTED WITH KUBERNETES

Deploy an app
In the next step [9] in the interactive tutorial, you’ll deploy a
containerized application to your cluster with a deployment
configuration. This describes how to create instances of
your app, and the master will schedule those instances onto
nodes in the cluster.

In the interactive terminal, create a new deployment with
the kubectl run command:

kubectl run kubernetes-bootcamp \

--image=docker.io/jocatalin/kubernetes-bootcamp:v1 --port=8080

This creates a new deployment with the name kuberne-
tes-bootcamp from a public repository at docker.io and
overrides the default port to 8080.

View the deployment with the command:

kubectl get deployments

The deployment is currently on a single node (host01),
because only that node is available.

Create a proxy
In the third part [9] of the tutorial, you will create a proxy
into your deployed app. A pod runs on an isolated private
network that cannot be accessed from outside. The kubectl
command uses an API to communicate with the application,
and a proxy is needed to expose the application for use by
other services.

Open a new terminal window and start the proxy server
with the command:

kubectl proxy

This creates a connection between your cluster and the vir-
tual terminal window. Notice it’s running on port 8001 on the
local host.

Return to the first terminal window and run a curl command
to see this in action:

curl http://localhost:8001/version

The JSON output, shown in the screenshot above, displays
the version information from the cluster itself.

Follow the online tutorial to find the internal name of the
deployed pod and then query that pod directly. You can also
get a detailed output of your pod by using the command:

kubectl describe pods

This output includes very important information, like the pod
name, local IP address, state, and restart count.

Moving forward
Kubernetes is a full-fledged deployment, scheduling, and
scaling manager and is capable of deciding all of the myr-
iad details of how to deploy an app on your cluster. The few
commands explored here are just the beginning of interact-
ing with and understanding a Kubernetes deployment. The
crucial takeaway is how fast and easy it is to do and how few
details you need to provide to use Kubernetes.

Follow the online interactive tutorial [10] to learn more
about how Kubernetes works and all that you can do
with it.

Links
[1] https://docs.docker.com/engine/swarm/
[2] http://mesos.apache.org/
[3] https://kubernetes.io/
[4] https://kubernetes.io/docs/concepts/workloads/pods/pod/
[5] https://kubernetes.io/docs/concepts/architecture/nodes/
[6] https://kubernetes.io/docs/concepts/overview/components/
[7] https://kubernetes.io/docs/concepts/workloads/controllers/

deployment/
[8] https://kubernetes.io/docs/tutorials/kubernetes-basics/
[9] https://kubernetes.io/docs/tutorials/kubernetes-basics/

deploy-interactive/
[10] https://kubernetes.io/docs/tutorials/kubernetes-basics/

explore-intro/

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore-intro/
https://docs.docker.com/engine/swarm/
http://mesos.apache.org/
https://kubernetes.io/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/deploy-interactive/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore-intro/

8 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

SET UP MINISHIFT AND RUN JENKINS ON LINUX .

MINISHIFT [1] is a tool that helps you run OKD [2]
(Red Hat’s open source OpenShift con-

tainer platform) locally by launching a single-node OKD clus-
ter inside a virtual machine. It is powered by Kubernetes [3],
which is one of my favorite things to talk about.

In this article, I will demonstrate how to get started with
Minishift on Linux. This was written for Ubuntu 18.04, and
you’ll need sudo access [4] on your Linux machine to run
some commands.

Prerequisites
Before starting the installation, your Linux machine must
have either KVM for Linux or VirtualBox [5], which runs on
every platform. This demo uses KVM, which you can install
along with all the required dependencies:

$ sudo apt install qemu-kvm \

libvirt-clients libvirt-daemon-system \

bridge-utils virt-manager

After installing KVM, you must make some modifications to
allow your user to use it. Specifically, you must add your user
name to the libvirt group:

$ sudo usermod --append --groups libvirt $(whoami)

$ newgrp libvirt

Next, install the Docker KVM driver, which is needed to run
containers on Minishift. I downloaded the Docker machine
driver directly to /usr/local/bin. You don’t have to save it
to /usr/local/bin, but you must ensure that its location is
in your PATH [6]:

$ curl -L https://github.com/dhiltgen/docker-machine-kvm/

releases/download/v0.10.0/docker-machine-driver-kvm-

ubuntu16.04 \

-o /usr/local/bin/docker-machine-driver-kvm

$ sudo chmod +x /usr/local/bin/docker-machine-driver-kvm

Install Minishift
Now that the prerequisites are in place, visit the Minishift re-
leases page [7] and determine which version of Minishift you
want to install. I used Minishift v1.34.3 [8].

Download the Linux .tar file [9] to a directory you will be
able to find easily. I used the minishift directory:

$ ls

Minishift-1.34.3-linux-amd64.tgz

Next, untar your new file using the tar command [10]:

$ tar zxvf minishift-1.34.3-linux-amd64.tgz

minishift-1.34.3-linux-amd64/

minishift-1.34.3-linux-amd64/LICENSE

minishift-1.34.3-linux-amd64/README.adoc

minishift-1.34.3-linux-amd64/minishift

By using the v (for verbose) option in your command, you can
see all the files and their locations in your directory structure.

Run the ls command to confirm that the new directory was
created:

$ ls
minishift-1.34.3-linux-amd64

Next, change to the new directory and find the binary file you
need; it is named minishift:

$ cd minishift-1.34.3-linux-amd64

$ ls

LICENSE minishift README.adoc

$

Move the minishift binary file to your PATH, which you can
find by running the following and looking at the output:

$ echo $PATH

/home/jess/.local/bin:/usr/local/sbin:/usr/local/bin

Set up Minishift
and run Jenkins on Linux
Install, configure, and use Minishift to create your first pipeline.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.okd.io/minishift/
https://www.redhat.com/sysadmin/learn-openshift-minishift
https://opensource.com/resources/what-is-kubernetes
https://en.wikipedia.org/wiki/Sudo
https://www.virtualbox.org/wiki/Downloads
https://opensource.com/article/17/6/set-path-linux
https://github.com/minishift/minishift/releases
https://github.com/minishift/minishift/releases/tag/v1.34.3
https://github.com/minishift/minishift/releases/download/v1.34.3/minishift-1.34.3-linux-amd64.tgz
https://opensource.com/article/17/7/how-unzip-targz-file

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 9

. SET UP MINISHIFT AND RUN JENKINS ON LINUX

I used /usr/local/bin as the minishift binary file’s
location:

$ sudo mv minishift /usr/local/bin

[sudo] password for jess:

$ ls /usr/local/bin

minishift

Run the minishift command and look at the output:

$ minishift

Mi nishift is a command-line tool that provisions and manages single-

node OpenShift clusters optimized for development workflows.

Usage:

 minishift [command]

Available Commands:

 addons Manages Minishift add-ons.

 completion Outputs minishift shell completion for the given shell

 config Modifies Minishift configuration properties.

 console Opens or displays the OpenShift Web Console URL.

[...]

Us e "minishift [command] --help" for more information about a

command.

Log into Minishift’s web console
Now that Minishift is installed, you can walk through it and
play with some cool new software. Begin with minishift
start. This, as you might guess, starts Minishift—specifical-
ly, it starts a one-node cluster on your computer:

$ minishift start

 Starting profile 'minishift'

 Check if deprecated options are used ... OK

 Checking if https://github.com is reachable ... OK

[...]

 Minishift will be configured with...

 Memory: 4GB

 vCPUs : 2GB

 Disk size: 20 GB

Starting Minishift VMOK

This process can take a long time, depending on your hard-
ware, so be patient. When it ends, you’ll get information
about where to find your imaginary cluster on your virtual-
ized network:

Server Information ...

MiniShift server started.

The server is accessible via web console at:

https://192.168.42.66:8443/console

Now, MiniShift is running, complete with a web console.
You can log into the OKD console using developer as the
user name and any password you want. I chose developer /
developer.

(Jess Cherry, CC BY-SA 4.0)

The web console is an easy control panel you can use to
administer your humble cluster. It’s a place for you to create
and load container images, add and monitor pods, and en-
sure your instance is healthy.

(Jess Cherry, CC BY-SA 4.0)

Build a pipeline
To start building your first pipeline, click Pipeline Build Ex-
ample on the console. Click Next to show the parameters
available to create the pipeline project.

(Jess Cherry, CC BY-SA 4.0)
A window appears with parameters to fill in if you want; you
can use what’s already there for this example. Walk through
the rest of the screen choices to create a sample pipeline.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

10 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

SET UP MINISHIFT AND RUN JENKINS ON LINUX .

(Jess Cherry, CC BY-SA 4.0)

When you click on My Project, you can see the details and
pods created for the project to run.

(Jess Cherry, CC BY-SA 4.0)
Open the jenkins-ephemeral link that was generated. Log
in again with the developer credentials and allow access to
run a pipeline in Jenkins.

(Jess Cherry, CC BY-SA 4.0)

Click Create, and let Minishift create the project for you. It
shows your success (or failure).

(Jess Cherry, CC BY-SA 4.0)
You can also click Show Parameters and scroll through the
list of parameters configured for this project. Click Close and
look for a confirmation message on the left.

(Jess Cherry, CC BY-SA 4.0)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 11

. SET UP MINISHIFT AND RUN JENKINS ON LINUX

(Jess Cherry, CC BY-SA 4.0)

Now you can look through the Jenkins interface to get a feel
for what it has to offer.

(Jess Cherry, CC BY-SA 4.0)

Find your project.

(Jess Cherry, CC BY-SA 4.0)

When you’re ready, click Build Now.

(Jess Cherry, CC BY-SA 4.0)

Then you can view the job’s output in the console output.

(Jess Cherry, CC BY-SA 4.0)

Once the job completes successfully, you will see a success
message at the bottom of the console.

What did this pipeline do? It updated the deployment
manually.

(Jess Cherry, CC BY-SA 4.0)

Congratulations, you successfully created an example auto-
mated deployment using Minishift!

Clean it up
The last thing to do is to clean up everything by running two
commands:

$ minishift stop

$ minishift delete

Why stop and then delete? Well, I like to make sure nothing
is running before I run a delete command of any kind. This
results in a cleaner delete without the possibility of having
any leftover or hung processes. Here are the commands’
output.

(Jess Cherry, CC BY-SA 4.0)

(Jess Cherry, CC BY-SA 4.0)

Final notes
Minishift is a great tool with great built-in automation. The
user interface is comfortable to work with and easy on
the eyes. I found it a fun new tool to play with at home,
and if you want to dive in deeper, just look over the great
documentation [11] and many online tutorials [12]. I rec-
ommend exploring this application in depth. Have a happy
time Minishifting!

Links
[1] https://www.okd.io/minishift/
[2] https://www.redhat.com/sysadmin/learn-openshift-minishift
[3] https://opensource.com/resources/what-is-kubernetes
[4] https://en.wikipedia.org/wiki/Sudo
[5] https://www.virtualbox.org/wiki/Downloads
[6] https://opensource.com/article/17/6/set-path-linux
[7] https://github.com/minishift/minishift/releases
[8] https://github.com/minishift/minishift/releases/tag/v1.34.3
[9] https://github.com/minishift/minishift/releases/download/

v1.34.3/minishift-1.34.3-linux-amd64.tgz
[10] https://opensource.com/article/17/7/how-unzip-targz-file
[11] https://docs.okd.io/3.11/minishift/using/index.html
[12] https://www.redhat.com/sysadmin/learn-openshift-minishift

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://docs.okd.io/3.11/minishift/using/index.html
https://www.redhat.com/sysadmin/learn-openshift-minishift
https://www.okd.io/minishift/
https://www.redhat.com/sysadmin/learn-openshift-minishift
https://opensource.com/resources/what-is-kubernetes
https://en.wikipedia.org/wiki/Sudo
https://www.virtualbox.org/wiki/Downloads
https://opensource.com/article/17/6/set-path-linux
https://github.com/minishift/minishift/releases
https://github.com/minishift/minishift/releases/tag/v1.34.3
https://github.com/minishift/minishift/releases/download/v1.34.3/minishift-1.34.3-linux-amd64.tgz
https://github.com/minishift/minishift/releases/download/v1.34.3/minishift-1.34.3-linux-amd64.tgz
https://opensource.com/article/17/7/how-unzip-targz-file
https://docs.okd.io/3.11/minishift/using/index.html
https://www.redhat.com/sysadmin/learn-openshift-minishift

12 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

WHAT IS IN A KUBERNETES NAMESPACE? As Shakespeare
once wrote, which we call a name-

space, by any other name, would still be a virtual cluster.
By virtual cluster, I mean Kubernetes can offer multiple
Kubernetes clusters on a single cluster, much like a virtu-
al machine is an abstraction of its host. According to the
Kubernetes docs [1]:

Why do you need to use namespaces? In one word:
isolation.

Isolation has many advantages, including that it supports
secure and clean environments. If you are the owner of the
infrastructure and are supporting developers, isolation is
fairly important. The last thing you need is someone who is
unfamiliar with how your cluster is built going and changing
the system configuration—and possibly disabling everyone’s
ability to log in.

The namespaces that start it all
The first three namespaces created in a cluster are always
default, kube-system, and kube-public. While you can tech-
nically deploy within these namespaces, I recommend leaving
these for system configuration and not for your projects.

• Default is for deployments that are not given a name-
space, which is a quick way to create a mess that will be
hard to clean up if you do too many deployments without
the proper information. I leave this alone because it serves
that one purpose and has confused me on more than one
occasion.

• Kube-system is for all things relating to, you guessed it,
the Kubernetes system. Any deployments to this name-
space are playing a dangerous game and can accidentally

KUBERNETES NAMESPACES FOR BEGINNERS .

cause irreparable damage to the system itself. Yes, I have
done it; I do not recommend it.

• Kube-public is readable by everyone, but the namespace
is reserved for system usage.

Using namespaces for isolation
I have used namespaces for isolation in a couple of ways. I
use them most often to split many users’ projects into sepa-
rate environments. This is useful in preventing cross-project
contamination since namespaces provide independent envi-
ronments. Users can install multiple versions of Jenkins, for
example, and their environmental variables won’t collide if
they are in different namespaces.

This separation also helps with cleanup. If development
groups are working on various projects that suddenly be-
come obsolete, you can delete the namespace and remove
everything in one swift movement with kubectl delete ns
<$NAMESPACENAME>. (Please make sure it’s the right
namespace. I deleted the wrong one in production once,
and it’s not pretty.)

Be aware that this can cause damage across teams and
problems for you if you are the infrastructure owner. For ex-
ample, if you create a namespace with some special, ex-
tra-secure DNS functions and the wrong person deletes it, all
of your pods and their running applications will be removed
with the namespace. Any use of delete should be reviewed
by a peer (through GitOps [2]) before hitting the cluster.

While the official documentation suggests not using mul-
tiple namespaces with 10 or fewer users [3], I still use them
in my own cluster for architectural purposes. The cleaner the
cluster, the better.

What admins need to know about namespaces
For starters, namespaces cannot be nested in other
namespaces. There can be only one namespace with de-
ployments in it. You don’t have to use namespaces for
versioned projects, but you can always use the labels to
separate versioned apps with the same name. Namespac-
es divide resources between users using resource quotas;

Kubernetes namespaces for
beginners
What is a namespace and why do you need it?

Kubernetes supports multiple virtual clusters
backed by the same physical cluster. These
virtual clusters are called namespaces.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://www.weave.works/blog/gitops-operations-by-pull-request
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 13

. KUBERNETES NAMESPACES FOR BEGINNERS

for example, this namespace can only have x number of
nodes. Finally, all namespaces scope down to a unique
name for the resource type.

Namespace commands in action
To try out the following namespace commands, you need to
have Minikube [4], Helm [5], and the kubectl [6] command
line installed. For information about installing them, see my
article Security scanning your DevOps pipeline [7] or each
project’s homepage. I am using the most recent release of
Minikube. The manual installation is fast and has consistent-
ly worked correctly the first time.

To get your first set of namespaces:

jess@Athena:~$ kubectl get namespace

NAME STATUS AGE

default Active 5m23s

kube-public Active 5m24s

kube-system Active 5m24s

To create a namespace:

jess@Athena:~$ kubectl create namespace athena

namespace/athena created

Now developers can deploy to the namespace you created;
for example, here’s a small and easy Helm chart:

je ss@Athena:~$ helm install teset-deploy stable/redis --namespace

athena

NAME: teset-deploy

LAST DEPLOYED: Sat Nov 23 13:47:43 2019

NAMESPACE: athena

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES:

** Please be patient while the chart is being deployed **

Re dis can be accessed via port 6379 on the following DNS names from

within your cluster:

te set-deploy-redis-master.athena.svc.cluster.local for read/write

operations

te set-deploy-redis-slave.athena.svc.cluster.local for read-only

operations

To get your password:

ex port REDIS_PASSWORD=$(kubectl get secret --namespace athena

teset-deploy-redis -o jsonpath="{.data.redis-password}" |

base64 --decode)

To connect to your Redis server:

1. Run a Redis pod that you can use as a client:

kubectl run --namespace athena teset-deploy-redis-client --rm

--tty -i --restart='Never' \

 --env REDIS_PASSWORD=$REDIS_PASSWORD \

--image docker.io/bitnami/redis:5.0.7-debian-9-r0 -- bash

2. Connect using the Redis CLI:

redis-cli -h teset-deploy-redis-master -a $REDIS_PASSWORD

redis-cli -h teset-deploy-redis-slave -a $REDIS_PASSWORD

To connect to your database from outside the cluster:

ku bectl port-forward --namespace athena svc/teset-deploy-redis-

master 6379:6379 &

redis-cli -h 127.0.0.1 -p 6379 -a $REDIS_PASSWORD

Now that this deployment is out, you have a chart deployed
in your namespace named test-deploy.

To look at what pods are in your namespace:

jess@Athena:~$ kubectl get pods --namespace athena

NAME READY STATUS RESTARTS AGE

teset-deploy-redis-master-0 1/1 Running 0 2m38s

teset-deploy-redis-slave-0 1/1 Running 0 2m38s

teset-deploy-redis-slave-1 1/1 Running 0 90s

At this point, you have officially isolated your application to a
single namespace and created one virtual cluster that talks
internally only to itself.

Delete everything with a single command:

jess@Athena:~$ kubectl delete namespace athena

namespace "athena" deleted

Because this deletes the application’s entire internal config-
uration, the delete may take some time, depending on how
large your deployment is.

Double-check that everything has been removed:

jess@Athena:~$ kubectl get pods --all-namespaces

NAMESPACE NAME READY STATUS RESTARTS AGE

kube-system coredns-5644d7b6d9-4vxv6 1/1 Running 0 32m

kube-system coredns-5644d7b6d9-t5wn7 1/1 Running 0 32m

kube-system etcd-minikube 1/1 Running 0 31m

kube-system kube-addon-manager-minikube 1/1 Running 0 32m

kube-system kube-apiserver-minikube 1/1 Running 0 31m

kube-system kube-controller-manager-minikube 1/1 Running 0 31m

kube-system kube-proxy-5tdmh 1/1 Running 0 32m

kube-system kube-scheduler-minikube 1/1 Running 0 31m

kube-system storage-provisioner 1/1 Running 0 27m

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://helm.sh/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://opensource.com/article/19/7/security-scanning-your-devops-pipeline

14 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

KUBERNETES NAMESPACES FOR BEGINNERS .

researching and taking advantage of to prevent overextend-
ing your cluster.

Conclusion
Namespaces are a great way to isolate projects and appli-
cations. This is just a quick introduction to the topic, so I en-
courage you to do more advanced research on namespaces
and use them more in your work.

Links
[1] https://kubernetes.io/docs/concepts/overview/working-

with-objects/namespaces/
[2] https://www.weave.works/blog/gitops-operations-by-pull-

request
[3] https://kubernetes.io/docs/concepts/overview/working-

with-objects/namespaces/
[4] https://kubernetes.io/docs/tasks/tools/install-minikube/
[5] https://helm.sh/
[6] https://kubernetes.io/docs/tasks/tools/install-kubectl/
[7] https://opensource.com/article/19/7/security-scanning-

your-devops-pipeline
[8] https://en.wikipedia.org/wiki/Segmentation_fault

This is a list of all the pods and all the known namespaces
where they live. As you can see, the application and name-
space you previously made are now gone.

Namespaces in practice
I currently use namespaces for security purposes, in-
cluding reducing the privileges of users with limitations.
You can limit everything—from which roles can access a
namespace to their quota levels for cluster resources, like
CPUs. For example, I use resource quotas and role-based
access control (RBAC) configurations to confirm that a
namespace is accessible only by the appropriate service
accounts.

On the isolation side of security, I don’t want my home Jen-
kins application to be accessible over a trusted local network
as secure images that have public IP addresses (and thus, I
have to assume, could be compromised).

Namespaces can also be helpful for budgeting purposes
if you have a hard budget on how much you can use in your
cloud platform for nodes (or, in my case, how much I can
deploy before segfaulting [8] my home server). Although this
is out of scope for this article, and it’s complicated, it is worth

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://www.weave.works/blog/gitops-operations-by-pull-request
https://www.weave.works/blog/gitops-operations-by-pull-request
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://helm.sh/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://opensource.com/article/19/7/security-scanning-your-devops-pipeline
https://opensource.com/article/19/7/security-scanning-your-devops-pipeline
https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/Segmentation_fault

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 15

KUBERNETES [1] is the dominant technology
for infrastructure today, and

that means sysadmins need to be familiar with adminis-
tering it. I have been managing Kubernetes clusters every
day for years now, and I picked up a few tricks that I high-
ly recommend for others looking to simplify their admin
experience.

I created this cheat sheet [2] to share the key notes about
kubectl and the commands I use daily to keep clusters up
and running. It’s broken up into sections to help you gauge
whether or not you should use them for certain tasks. I also
included some flags in both long-form and shorthand to help
get you fluent with them more quickly.

Get, create, edit, and delete resources with
kubectl
The safest place to start with a command-line utility is to
ask questions (read operations) rather than give commands
(write operations). The helpful get commands can get you
rolling.

Kubectl get
Use get to pull a list of resources you have currently on your
cluster. The types of resources you can get include:

• Namespace
• Pod
• Node
• Deployment
• Service
• ReplicaSets

Each of these provides details about the available resources
in the cluster. As an example, here’s the output of the get
nodes command, which provides a version of Kubernetes in
usage and status.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready master 9d v1.18.0

Most of these commands have shortened versions. To get
the namespaces, you can run kubectl get namespaces or
kubectl get ns (see the cheat sheet for the full list):

$ kubectl get ns

NAME STATUS AGE

charts Active 8d

default Active 9d

kube-node-lease Active 9d

kube-public Active 9d

kube-system Active 9d

Each get command can focus in on a given namespace with
the –namespace or -n flag. I use especially help when you
want to review the pods in kube-system, which are the ser-
vices needed to run Kubernetes itself.

$ kubectl get pods -n kube-system

NAME READY STATUS RESTARTS AGE

coredns-66bff467f8-mjptx 1/1 Running 2 9d

coredns-66bff467f8-t2xcz 1/1 Running 2 9d

etcd-minikube 1/1 Running 1 9d

kube-apiserver-minikube 1/1 Running 1 9d

kube-controller-manager-minikube 1/1 Running 2 9d

kube-proxy-rpc9d 1/1 Running 1 9d

kube-scheduler-minikube 1/1 Running 2 9d

storage-provisioner 1/1 Running 1 9d

Kubectl create
Now that we’ve gathered some resources, let’s create some
more. With kubectl, you can create nearly any type of re-
source in a cluster. Some of these resources do require con-

9 kubectl commands
sysadmins need to know

Download our new kubectl cheat sheet to learn helpful commands for the Kubernetes
command-line utility.

. 9 KUBECTL COMMANDS SYSADMINS NEED TO KNOW

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/what-is-kubernetes
https://opensource.com/downloads/kubectl-cheat-sheet

16 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

9 KUBECTL COMMANDS SYSADMINS NEED TO KNOW .

 f:spec:

 f:concurrencyPolicy: {}

 f:failedJobsHistoryLimit: {}

 f:jobTemplate:

 f:metadata:

 f:name: {}

 f:spec:

 f:template:

 f:spec:

 f:containers:

 k:{"name":"my-new-cron"}:

 .: {}

 f:command: {}

 f:image: {}

 f:imagePullPolicy: {}

The schedule is set to every 15 seconds:

We will change it to every 25 seconds and write to the re-
source:

Once we write it, we can see it was changed.

$ kubectl edit cronjob/my-existing-cron

cronjob.batch/my-existing-cron edited

If we want to use a different editor, we can override that by
adding by using this KUBE_EDITOR syntax.

$ KUBE_EDITOR="nano" kubectl edit cronjob/my-existing-cron

Kubectl delete
So far, we have done everything short of removing it alto-
gether, so that is what we are going to do next. The cronjob
we just edited was one of two cronjobs, so now we’re just
going to delete the whole resource.

$ kubectl delete cronjob my-existing-cron

cronjob.batch "my-existing-cron" deleted

As a warning, you should never just delete something you
don’t know all the information about. Once the resource is

figuration files and namespaces to set the resource to, as
well as names. Resources you can create include:

• service
• cronjob
• deployment
• job
• namespace (ns)

So, for example, create namespace requires another pa-
rameter to name the namespace.

$ kubectl create ns hello-there

namespace/hello-there created

We can also create continuously running jobs with cron like
many Linux friends will be familiar with [3]. Here we use
cronjob to echoes “hello” every five seconds.

$ kubectl create cronjob my-cron --image=busybox

--schedule=“*/5 * * * *“ -- echo hello

cronjob.batch/my-namespaced-cron created

You can also use the shortened version, cj, rather than
cronjob.

$ kubectl create cj my-existing-cron --image=busybox

--schedule=“*/15 * * * *“ -- echo hello

cronjob.batch/my-existing-cron created

Kubectl edit
So, what happens when we’ve created something, and we
want to update? That’s where kubectl edit comes in.

You can edit any resource in your cluster when you run
this command. It will open your default text editor. So we’ll
edit our existing cron job, can we run:

$ kubectl edit cronjob/my-existing-cron

This shows our configuration to edit.

Please edit the object below. Lines beginning with a '#' will

be ignored, and an empty file will abort the edit. If an error

occurs while saving this file will be reopened with the relevant

failures.

#

apiVersion: batch/v1beta1

kind: CronJob

metadata:

 creationTimestamp: “2020-04-19T16:06:06Z“

 managedFields:

 - apiVersion: batch/v1beta1

 fieldsType: FieldsV1

 fieldsV1:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/11/how-use-cron-linux

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 17

. 9 KUBECTL COMMANDS SYSADMINS NEED TO KNOW

Failed Job History Limit: 1

Starting Deadline Seconds: <unset>

Selector: <unset>

Parallelism: <unset>

Completions: <unset>

Pod Template:

 Labels: <none>

 Containers:

 my-cron:

 Image: busybox

 Port: <none>

 Host Port: <none>

Kubectl logs
While the describe command gives you the events occur-
ring for the applications inside a pod, logs offer detailed
insights into what’s happening inside Kubernetes in rela-
tion to the pod. Understanding this distinction allows you
to troubleshoot issues happening inside the application
and inside Kubernetes because they are not always the
same problem.

$ kubectl logs cherry-chart-88d49478c-dmcfv -n charts

Snippet:

172.17.0.1 - - [19/Apr/2020:16:01:15 +0000] "GET / HTTP/1.1"

200 612 "-" "kube-probe/1.18" "-"

172.17.0.1 - - [19/Apr/2020:16:01:20 +0000] "GET / HTTP/1.1"

200 612 "-" "kube-probe/1.18" "-"

172.17.0.1 - - [/Apr/2020:16:01:25 +0000] "GET / HTTP/1.1"

200 612 "-" "kube-probe/1.18" "-"

172.17.0.1 - - [19/Apr/2020:16:01:30 +0000] "GET / HTTP/1.1"

200 612 "-" "kube-probe/1.18" "-"

172.17.0.1 - - [19/Apr/2020:16:01:35 +0000] "GET / HTTP/1.1"

200 612 "-" "kube-probe/1.18" "-"

172.17.0.1 - - [19/Apr/2020:16:01:40 +0000] "GET / HTTP/1.1"

200 612 "-" "kube-probe/1.18" "-"

172.17.0.1 - - [19/Apr/2020:16:01:45 +0000] "GET / HTTP/1.1"

200 612 "-" "kube-probe/1.18" "-"

172.17.0.1 - - [19/Apr/2020:16:01:50 +0000] "GET / HTTP/1.1"

200 612 "-" "kube-probe/1.18" "-"

172.17.0.1 - - [19/Apr/2020:16:01:55 +0000] "GET / HTTP/1.1"

200 612 "-" "kube-probe/1.18" "-"

You can also remove extra noise or look for another event
by using grep with this command. The kube-probe can be
noisy, so let’s filter it out with grep.

$ kubectl logs cherry-chart-88d49478c-dmcfv -n charts | grep

-vie kube-probe

12 7.0.0.1 - - [10/Apr /2020:23:01:55 +0000] "GET / HTTP/1.1"

200 612 "-" "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:75.0)

Gecko/20100101 Firefox/75.0" "-"

deleted, there’s no recovering it; you will have to recreate it,
so think twice before you run this command.

Kubectl apply
Earlier, I mentioned that some commands will require config-
uration files. The apply command allows you to apply con-
figurations via files for resources within your cluster. This can
also be done through standard in (STDIN) on the command
line, but the suggestion is always by file.

I consider this command to be a little more advanced, as
you need to know how to use your cluster and what kind of
configuration file to apply to it. For this example, I am using
the role-based access control (RBAC) config from Helm [4]
for a service account.

$ kubectl apply -f commands.yaml

serviceaccount/tiller created

clusterrolebinding.rbac.authorization.k8s.io/tiller created

You can apply just about any configuration you want, but you
will always need to know for sure what it is you’re applying,
or you may see unintended outcomes.

Troubleshooting Kubernetes with kubectl

Kubectl describe
Describe shows the details of the resource you’re looking
at. The most common use case is describing a pod or node
to check if there’s an error in the events, or if resources are
too limited to use.

Resources you can describe include:

• Nodes
• Pods
• Services
• Deployments
• Replica sets
• Cronjobs

In this example, we can describe the cronjob currently in
the cluster from our previous examples.

$ kubectl describe cronjob my-cron

Snippet:

Name: my-cron

Namespace: default

Labels: <none>

Annotations: <none>

Schedule: */5 * * * *

Concurrency Policy: Allow

Suspend: False

Successful Job History Limit: 3

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/venezia/k8s-helm/blob/master/docs/service_accounts.md

18 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

9 KUBECTL COMMANDS SYSADMINS NEED TO KNOW .

$ kubectl cp commands_copy.txt charts/cherry-chart-88d49478c-

dmcfv:commands.txt

$ kubectl exec -it cherry-chart-88d49478c-dmcfv -n charts -- /

bin/bash

root@cherry-chart-88d49478c-dmcfv:/# ls

bi n boot commands.txt dev etc home lib lib64 media mnt

opt proc root run sbin srv sys tmp usr var

Here is another example, but this time pulling a file to our
local machine from a container. The syntax is kubectl cp
<namespace/podname:/path/tofile> format:

$ kubectl cp charts/cherry-chart-88d49478c-dmcfv:commands.txt

commands_copy.txt

$ ls

commands_copy.txt

Download the kubectl cheat sheet
There are a lot of little commands that are helpful to have
around as a Kubernetes administrator. I hope this cheat
sheet comes in handy for you!

Links
[1] https://opensource.com/resources/what-is-kubernetes
[2] https://opensource.com/downloads/kubectl-cheat-sheet
[3] https://opensource.com/article/17/11/how-use-cron-linux
[4] https://github.com/venezia/k8s-helm/blob/master/docs/

service_accounts.md

Since some deployments have multiple containers within a
pod, you can also use the -c <container name> with your
logs to only look in one specific container for logs.

Kubectl exec
Much like the docker exec command, you can also exec
into a container to troubleshoot an application directly. This
is useful when the logs from the pod haven’t provided you
an answer to the issues you may be debugging. When using
the exec command, the end of the line must always provide
which shell you are using within the pod.

$ kubectl exec -it cherry-chart-88d49478c-dmcfv -n charts -- /

bin/bash

root@cherry-chart-88d49478c-dmcfv:/#

Kubectl cp
This command is for copying files and directories to and from
containers, much like the Linux cp command. It is not some-
thing you will use every day, but it is my personal favorite for
pulling or restoring backups in an emergency when automa-
tion is failing.

Here’s an example of copying a local file to a container.
The syntax follows a kubectl cp <filename> <namespace/
podname:/path/tofile> format:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/downloads/kubectl-cheat-sheet
https://opensource.com/resources/what-is-kubernetes
https://opensource.com/downloads/kubectl-cheat-sheet
https://opensource.com/article/17/11/how-use-cron-linux
https://github.com/venezia/k8s-helm/blob/master/docs/service_accounts.md
https://github.com/venezia/k8s-helm/blob/master/docs/service_accounts.md

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 19

BY JESSICA CHERRY

kubectl is a powerful command-line tool to maintain your Kubernetes cluster. Here are
commonly used commands to take you above and beyond average cluster administration.

kubectl get
kubectl get <resource> --output wide

List all information about the select resource type.
Common resources include:

• Pods (kubectl get pods)
• Namespaces (kubectl get ns)
• Nodes (kubectl get node)
• Deployments (kubectl get deploy)
• Service (kubectl get svc)
• ReplicaSets (kubectl get rs)

Call resources using singular (pod), plural (pods),
or with shortcuts.

Get pod by namespace:
-n, --namespace

Wait for a resource to finish:
-w, --watch

Query multiple resources (comma-separated values):

kubectl get rs,services -o wide

opensource.com Twitter @opensourceway | facebook.com/opensourceway | CC BY-SA 4.0

kubectl create
kubectl create --filename ./pod.yaml

Some resources require a name parameter. A small
list of resources you can create include:

• Services (svc)
• Cronjobs (cj)
• Deployments (deploy)
• Quotas (quota)

See required parameters:

kubectl create cronjobs --help

kubectl edit <resource-type>/<name>

Edit resources in a cluster. The default editor opens
unless KUBE_EDITOR is specificed:

KUBE_EDITOR="nano" kubectl edit \
svc/container-registry

kubectl edit

kubectl delete
kubectl delete <resource>

Remove one more our resources by name, label, or
by filename.

If you want to delete pods by label in mass you have
to describe the pod and gather the app=”name” from
the label section. This makes it easier to cycle
multiple containers at once.

Add --grace-period=5 to give yourself a few seconds
to cancel before deleting:

kubectl delete pod foo --grace-period=5

Basic Commands

Kubectl Cheat Sheet

. KUBECTL CHEAT SHEET

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

20 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

BY JESSICA CHERRY

kubectl is a powerful command-line tool to maintain your Kubernetes cluster. Here are
commonly used commands to take you above and beyond average cluster administration.

kubectl get
kubectl get <resource> --output wide

List all information about the select resource type.
Common resources include:

• Pods (kubectl get pods)
• Namespaces (kubectl get ns)
• Nodes (kubectl get node)
• Deployments (kubectl get deploy)
• Service (kubectl get svc)
• ReplicaSets (kubectl get rs)

Call resources using singular (pod), plural (pods),
or with shortcuts.

Get pod by namespace:
-n, --namespace

Wait for a resource to finish:
-w, --watch

Query multiple resources (comma-separated values):

kubectl get rs,services -o wide

opensource.com Twitter @opensourceway | facebook.com/opensourceway | CC BY-SA 4.0

kubectl create
kubectl create --filename ./pod.yaml

Some resources require a name parameter. A small
list of resources you can create include:

• Services (svc)
• Cronjobs (cj)
• Deployments (deploy)
• Quotas (quota)

See required parameters:

kubectl create cronjobs --help

kubectl edit <resource-type>/<name>

Edit resources in a cluster. The default editor opens
unless KUBE_EDITOR is specificed:

KUBE_EDITOR="nano" kubectl edit \
svc/container-registry

kubectl edit

kubectl delete
kubectl delete <resource>

Remove one more our resources by name, label, or
by filename.

If you want to delete pods by label in mass you have
to describe the pod and gather the app=”name” from
the label section. This makes it easier to cycle
multiple containers at once.

Add --grace-period=5 to give yourself a few seconds
to cancel before deleting:

kubectl delete pod foo --grace-period=5

Basic Commands

Kubectl Cheat Sheet

KUBECTL CHEAT SHEET .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 21

. SPEED UP ADMINISTRATION OF KUBERNETES CLUSTERS WITH K9S

USUALLY, MY ARTICLES ABOUT KUBERNETES ADMINISTRATION
are full of kubectl commands for ad-

ministration for your clusters. Recently, however, someone
pointed me to the k9s [1] project for a fast way to review and
resolve day-to-day issues in Kubernetes. It’s been a huge
improvement to my workflow and I’ll show you how to get
started in this tutorial.

Installation can be done on a Mac, in Windows, and Li-
nux. Instructions for each operating system can be found
here [1]. Be sure to complete installation to be able to
follow along.

I will be using Linux and Minikube, which is a lightweight
way to run Kubernetes on a personal computer. Install it fol-
lowing this tutorial [2] or by using the documentation [3].

Setting the k9s configuration file
Once you’ve installed the k9s app, it’s always good to start
with the help command.

$ k9s help

K9s is a CLI to view and manage your Kubernetes clusters.

Usage:

 k9s [flags]

 k9s [command]

Available Commands:

 help Help about any command

 info Print configuration info

 version Print version/build info

Flags:

 -A, --all-namespaces Launch K9s in all namespaces

 --as string Username to impersonate or the

operation

 --as-group stringArray Group to impersonate for the

operation

 --certificate-authority string Path to a cert file for the

certificate authority

 --client-certificate string Path to a client certificate file

for TLS

 --client-key string Path to a client key file for TLS

 --cluster string The name of the kubeconfig

cluster to use

 -c, --command string Specify the default command to

view when the application launches

 --context string The name of the kubeconfig

context to use

 --demo Enable demo mode to show

keyboard commands

 --headless Turn K9s header off

 -h, --help help for k9s

 --insecure-skip-tls-verify If true, the server's caCertFile

will not be checked for validity

 --kubeconfig string Path to the kubeconfig file to use

for CLI requests

 -l, --logLevel string Specify a log level (info, warn,

debug, error, fatal, panic,

trace) (default "info")

 -n, --namespace string If present, the namespace scope

for this CLI request

 --readonly Disable all commands that modify

the cluster

 -r, --refresh int Specify the default refresh rate

as an integer (sec) (default 2)

 --request-timeout string The length of time to wait

before giving up on a single

server request

 --token string Bearer token for authentication to

the API server

 --user string The name of the kubeconfig user

to use

Use "k9s [command] --help" for more information about a command.

Speed up administration of
Kubernetes clusters with k9s
Check out this cool terminal UI for Kubernetes administration.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/derailed/k9s
https://github.com/derailed/k9s
https://opensource.com/article/18/10/getting-started-minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/

22 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

 view:

 active: dp

 thresholds:

 cpu:

 critical: 90

 warn: 70

 memory:

 critical: 90

 warn: 70

We set k9s to look for a local minikube configuration, so I’m
going to confirm minikube is online and ready to go.

$ minikube status

host: Running

kubelet: Running

apiserver: Running

kubeconfig: Configured

Running k9s to explore a Kubernetes cluster
With a configuration file set and pointing at our local cluster,
we can now run the k9s command.

$ k9s

Once you start it up, the k9s text-based user interface (UI)
will pop up. With no flag for a namespace, it will show you the
pods in the default namespace.

If you run in an environment with a lot of pods, the default
view can be overwhelming. Alternatively, we can focus on
a given namespace. Exit the application and run k9s -n
<namespace> where <namespace> is an existing name-
space. In the picture below, I ran k9s -n minecraft, and it
shows my broken pod

As you can see, there is a lot of functionality we can config-
ure with k9s. The only step we need to take place to get off
the ground is to write a configuration file. The info command
will point us to where the application is looking for it.

$ k9s info

 ____ __.________

| |/ _/ __ ______

| < ____ / ___/

| | \ / /___ \

|____|__ \ /____//____ >

 \/ \/

Configuration: /Users/jess/.k9s/config.yml

Logs: /var/folders/5l/c1y1gcw97szdywgf9rk1100m0000gn/T/

k9s-jess.log

Screen Dumps: /var/folders/5l/c1y1gcw97szdywgf9rk1100m0000gn/T/

k9s-screens-jess

To add a file, make the directory if it doesn’t already exist and
then add one.

$ mkdir -p ~/.k9s/

$ touch ~/.k9s/config.yml

For this introduction, we will use the default config.yml rec-
ommendations from the k9s repository. The maintainers
note that this format is subject to change, so we can check
here [4] for the latest version.

k9s:

 refreshRate: 2

 headless: false

 readOnly: false

 noIcons: false

 logger:

 tail: 200

 buffer: 500

 sinceSeconds: 300

 fullScreenLogs: false

 textWrap: false

 showTime: false

 currentContext: minikube

 currentCluster: minikube

 clusters:

 minikube:

 namespace:

 active: ""

 favorites:

 - all

 - kube-system

 - default

SPEED UP ADMINISTRATION OF KUBERNETES CLUSTERS WITH K9S .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/derailed/k9s#k9s-configuration

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 23

Viewing different Kubernetes resources quickly
Need to get to something that’s not a pod? Yea I do too.
There are a number of shortcuts that are available when we
enter a colon (":") key. From there, you can use the following
commands to navigate around there.

• :svc—Jump to a services view.

• :deploy—Jump to a deployment view.

• :rb—Jump to a Rolebindings view for role-based access
control (RBAC) [6] management.

So once you have k9s up and running, there are a bunch of
things you can do quickly.

Navigating k9s happens through shortcut keys. We can
always use arrow keys and the enter key to choose items
listed. There are quite a few other universal keystrokes to
navigate to different views:

• 0—Show all pods in all namespaces

• d—Describe the selected pod

• l—Show logs for the selected pod pod

You may notice that k9s is set to use Vim command keys [5],
including moving up and down using J and K keys. Good
luck exiting, emacs users :)

. SPEED UP ADMINISTRATION OF KUBERNETES CLUSTERS WITH K9S

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://opensource.com/article/19/3/getting-started-vim

24 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

SPEED UP ADMINISTRATION OF KUBERNETES CLUSTERS WITH K9S .

Skimming the events does not tell us a reason for the failure.
Next, I hit the esc key and go check the logs by highlighting
the pod and entering <shift-l>.

Unfortunately, the logs don’t offer anything helpful either
(probably because the deployment was never correctly con-
figured), and the pod will not come up.

I then esc to step back out, and I will see if deleting the
pod will take care of this issue. To do so, I highlight the
pod and use <ctrl-d>. Thankfully, k9s prompts users before
deletion.

While I did delete the pod, the deployment resource still
exists, so a new pod will come back up. It will also con-
tinue to restart and crash for whatever reason (we don’t
know yet).

Here is the point where I would repeat reviewing logs, de-
scribing resources, and use the e shortcut to even edit a
running pod to troubleshoot the behavior. In this particular
case, the failing pod is not configured to run in this environ-
ment. So let’s delete the deployment to stop crash-then-re-
boot loop we are in.

We can get to deployments by typing :deploy and click-
ing enter. From there we highlight and press <ctrl-d> to
delete.

• :namespace—Jump back to the namespaces view.

• :cj—Jump to the cronjobs view to see what jobs are sched-
uled in the cluster.

The most used tool for this application will be the keyboard;
to go up or down on any page, use the arrow keys. If you
need to quit, remember to use Vim keybindings. Type :q and
hit enter to leave.

Example of troubleshooting Kubernetes with k9s
How does k9s help when something goes wrong? To walk
through an example, I let several pods die due to misconfigu-
ration. Below you can see my terrible hello deployment that’s
crashing. Once we highlight it, we press d to run a describe
command to see what is causing the failure.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 25

. SPEED UP ADMINISTRATION OF KUBERNETES CLUSTERS WITH K9S

The entire application is configured in YAML files, so cus-
tomization will feel familiar to any Kubernetes administrator.

Simplify your life with k9s
I’m prone to administrating over my team’s systems in a
very manual way, more for brain training than anything else.
When I first heard about k9s, I thought, “This is just lazy Ku-
bernetes,” so I dismissed it and went back to doing my man-
ual intervention everywhere. I actually started using it daily
while working through my backlog, and I was blown away at
how much faster it was to use than kubectl alone. Now I’m
a convert.

It’s important to know your tools and master the “hard
way” of doing something. It is also important to remember,
as far as administration goes, it’s important to work smarter,
not harder. Using k9s is the way I live up to that objective.
I guess we can call it lazy Kubernetes administration, and
that’s okay.

Links
[1] https://github.com/derailed/k9s
[2] https://opensource.com/article/18/10/getting-started-

minikube
[3] https://kubernetes.io/docs/tasks/tools/install-minikube/
[4] https://github.com/derailed/k9s#k9s-configuration
[5] https://opensource.com/article/19/3/getting-started-vim
[6] https://kubernetes.io/docs/reference/access-authn-authz/

rbac/
[7] https://opensource.com/article/19/3/move-your-dotfiles-

version-control
[8] https://k9scli.io/topics/aliases/
[9] https://k9scli.io/topics/hotkeys/
[10] https://github.com/derailed/k9s/tree/master/plugins

And poof the deployment is gone! It only took a few key-
strokes to clean up this failed deployment.

k9s is incredibly customizable
So this application has a ton of customization options, down
to the color scheme of the UI. Here are a few editable op-
tions you may be interested in:

• Adjust where you put the config.yml file (so you can store
it in version control [7])

• Add custom aliases [8] to an alias.yml file
• Create custom hotkeys [9] in a hotkey.yml file
• Explore available plugins [10] or write your own

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/derailed/k9s
https://opensource.com/article/18/10/getting-started-minikube
https://opensource.com/article/18/10/getting-started-minikube
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://github.com/derailed/k9s#k9s-configuration
https://opensource.com/article/19/3/getting-started-vim
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://opensource.com/article/19/3/move-your-dotfiles-version-control
https://opensource.com/article/19/3/move-your-dotfiles-version-control
https://k9scli.io/topics/aliases/
https://k9scli.io/topics/hotkeys/
https://github.com/derailed/k9s/tree/master/plugins
https://opensource.com/article/19/3/move-your-dotfiles-version-control
https://k9scli.io/topics/aliases/
https://k9scli.io/topics/hotkeys/
https://github.com/derailed/k9s/tree/master/plugins

26 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

LEVEL UP YOUR USE OF HELM ON KUBERNETES WITH CHARTS .

APPLICATIONS ARE COMPLEX COLLECTIONS of
code and configuration

that have a lot of nuance to how they are installed. Like all
open source software, they can be installed from source
code, but most of the time users want to install something
simply and consistently. That’s why package managers
exist in nearly every operating system, which manages
the installation process.

Similarly, Kubernetes depends on package management
to simplify the installation process. In this article, we’ll be
using the Helm package manager and its concept of stable
charts to create a small application.

What is Helm package manager?
Helm [1] is a package manager for applications to be de-
ployed to and run on Kubernetes. It is maintained by the
Cloud Native Computing Foundation (CNCF) [2] with collab-
oration with the largest companies using Kubernetes. Helm
can be used as a command-line utility, which I cover how to
use here [3].

Installing Helm
Installing Helm is quick and easy for Linux and macOS.
There are two ways to do this, you can go to the release
page [4], download your preferred version, untar the file,
and move the Helm executable to your /usr/local/bin or
your /usr/bin whichever you are using.

Alternatively, you can use your operating system package
manage (dnf, snap, brew, or otherwise) to install it. There
are instructions on how to install on each OS on this GitHub
page [5].

What are Helm Charts?
We want to be able to repeatably install applications, but also
to customize them to our environment. That’s where Helm
Charts comes into play. Helm coordinates the deployment
of applications using standardized templates called Charts.
Charts are used to define, install, and upgrade your applica-
tions at any level of complexity.

A Chart is a Helm package. It contains all
of the resource definitions necessary to
run an application, tool, or service inside
of a Kubernetes cluster. Think of it like
the Kubernetes equivalent of a Homebrew
formula, an Apt dpkg, or a Yum RPM file.
Using Helm [6]

Charts are quick to create, and I find them straightforward
to maintain. If you have one that is accessible from a pub-
lic version control site, you can publish it to the stable re-
pository [7] to give it greater visibility. In order for a Chart
to be added to stable, it must meet a number of technical
requirements [8]. In the end, if it is considered properly
maintained by the Helm maintain, it can then be published
to Helm Hub [9].

Since we want to use the community-curated stable
charts, we will make that easier by adding a shortcut:

$ helm repo add stable https://kubernetes-charts.storage.

googleapis.com

"stable" has been added to your repositories

Running our first Helm Chart
Since I’ve already covered the basic Helm usage in this ar-
ticle [10], I’ll focus on how to edit and use charts in this ar-
ticle. To follow along, you’ll need Helm installed and access
to some Kubernetes environment, like minikube (which you
can walk through here [11] or here [12]).

Starting I will be picking one chart. Usually, in my article I
use Jenkins as my example, and I would gladly do this if the
chart wasn’t really complex. This time I’ll be using a basic
chart and will be creating a small wiki, using mediawiki and
its chart [13].

So how do I get this chart? Helm makes that as easy as
a pull.

By default, charts are compressed in a .tgz file, but we can
unpack that file to customize our wiki by using the --untar flag.

Level up your use of Helm
on Kubernetes with Charts
Configuring known apps using the Helm package manager.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://helm.sh/
https://www.cncf.io/
https://opensource.com/article/20/2/kubectl-helm-commands
https://github.com/helm/helm/releases/tag/v3.1.1
https://github.com/helm/helm
https://helm.sh/docs/intro/using_helm/
https://github.com/helm/charts
https://github.com/helm/charts/blob/master/CONTRIBUTING.md#technical-requirements
https://artifacthub.io/
https://opensource.com/article/20/2/kubectl-helm-commands
https://opensource.com/article/18/10/getting-started-minikube
https://opensource.com/article/19/7/security-scanning-your-devops-pipeline
https://github.com/helm/charts/tree/master/stable/mediawiki

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 27

. LEVEL UP YOUR USE OF HELM ON KUBERNETES WITH CHARTS

$ helm pull stable/mediawiki --untar

$ ls

mediawiki/

$ cd mediawiki/

$ ls

Chart.yaml README.md requirements.lock templates/

OWNERS charts/ requirements.yaml values.yaml

Now that we have this we can begin customizing the chart.

Editing your Helm Chart
When the file was untared there was a massive amount of
files that came out. While it does look frightening, there re-
ally is only one file we should be working with and that’s the
values.yaml file.

Everything that was unpacked was a list of template files
that has all the information for the basic application config-
urations. All the template files actually depend on what is
configured in the values.yaml file. Most of these templates
and chart files actually are for creating service accounts in
the cluster and the various sets of required application con-
figurations that would usually be put together if you were to
build this application on a regular server.

But on to the values.yaml file and what we should be
changing in it. Open it in your favorite text editor or IDE. We
see a YAML [14] file with a ton of configuration. If we zoom in
just on the container image file, we see its repository, regis-
try, and tags amongst other details.

Bitnami DokuWiki image version

ref: https://hub.docker.com/r/bitnami/mediawiki/tags/

##

image:

 registry: docker.io

 repository: bitnami/mediawiki

 tag: 1.34.0-debian-10-r31

 ## Specify a imagePullPolicy

 ## Defaults to 'Always' if image tag is 'latest', else set to

'IfNotPresent'

 ## ref: http://kubernetes.io/docs/user-guide/images/

#pre-pulling-images

 ##

 pullPolicy: IfNotPresent

 ## Optionally specify an array of imagePullSecrets.

 ## Secrets must be manually created in the namespace.

 ## ref: https://kubernetes.io/docs/tasks/configure-pod-

container/pull-image-private-registry/

 ##

 # pullSecrets:

 # - myRegistryKeySecretName

As you can see in the file each configuration for the values
is well-defined. Our pull policy is set to IfNotPresent. This
means if I run a helm pull command, it will not overwrite

my existing version. If it’s set to always, the image will
default to the latest version of the image on every pull. I’ll
be using the default in this case, as in the past I have run
into images being broken if it goes to the latest version
without me expecting it (remember to version control your
software, folks).

Customizing our Helm Chart
So let’s configure this values file with some basic changes
and make it our own. I’ll be changing some naming conven-
tions, the wiki username, and the mediawiki site name. Note:
This is another snippet from values.yaml. All of this customi-
zation happens in that one file.

User of the application

ref: https://github.com/bitnami/bitnami-docker-

mediawiki#environment-variables

##

mediawikiUser: cherrybomb

Application password

Defaults to a random 10-character alphanumeric string if not set

ref: https://github.com/bitnami/bitnami-docker-

mediawiki#environment-variables

##

mediawikiPassword:

Admin email

ref: https://github.com/bitnami/bitnami-docker-

mediawiki#environment-variables

##

mediawikiEmail: root@example.com

Name for the wiki

ref: https://github.com/bitnami/bitnami-docker-

mediawiki#environment-variables

##

mediawikiName: Jess's Home of Helm

After this, I’ll make some small modifications to our database
name and user account. I changed the defaults to “jess” so
you can see where changes were made.

externalDatabase:

 ## Database host

 host:

 ## Database port

 port: 3306

 ## Database user

 user: jess_mediawiki

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/YAML

28 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

 # http: "30000"

 # https: "30001"

 ## Enable client source IP preservation

 ## ref http://kubernetes.io/docs/tasks/access-application-cluster/

create-external-load-balancer/#preserving-the-client-source-ip

 ##

 externalTrafficPolicy: Cluster

Now that we have made the configurations to allow traffic
and create the database, we know that we can go ahead and
deploy our chart.

Deploy and enjoy!
Now that we have our custom version of the wiki, it’s time to
create a deployment. Before we get into that, let’s first con-
firm that nothing else is installed with Helm, to make sure
my cluster has available resources to run our wiki.

$ helm ls

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

There are no other deployments through Helm right now, so
let’s proceed with ours.

$ helm install jesswiki -f values.yaml stable/mediawiki

NAME: jesswiki

LAST DEPLOYED: Thu Mar 5 12:35:31 2020

NAMESPACE: default

STATUS: deployed

REVISION: 2

NOTES:

1. Get the MediaWiki URL by running:

 NOTE: It may take a few minutes for the LoadBalancer IP to be

available.

 Watch the status with: 'kubectl get svc --namespace

default -w jesswiki-mediawiki'

 ex port SERVICE_IP=$(kubectl get svc --namespace default

jesswiki-mediawiki --template "{{ range (index .status.

loadBalancer.ingress 0) }}{{.}}{{ end }}")

 echo "Mediawiki URL: http://$SERVICE_IP/"

2. Get your MediaWiki login credentials by running:

 echo Username: user

 echo Password: $(kubectl get secret --namespace default

jesswiki-mediawiki -o jsonpath="{.data.mediawiki-password}" |

 base64 --decode)

$

Perfect! Now we will navigate to the wiki, which is accessible
at the cluster IP address. To confirm that address:

 ## Database password

 password:

 ## Database name

 database: jess_mediawiki

##

MariaDB chart configuration

##

https://github.com/helm/charts/blob/master/stable/mariadb/

values.yaml

##

mariadb:

 ## Whether to deploy a mariadb server to satisfy the applications

database requirements. To use an external database set this to

false and configure the externalDatabase parameters

 enabled: true

 ## Disable MariaDB replication

 replication:

 enabled: false

 ## Create a database and a database user

 ## ref: https://github.com/bitnami/bitnami-docker-mariadb/blob/

master/README.md#creating-a-database-user-on-first-run

 ##

 db:

 name: jess_mediawiki

 user: jess_mediawiki

And finally, I’ll be adding some ports in our load balancer to
allow traffic from the local host. I’m running on minikube and
find the LoadBalancer option works well.

service:

 ## Kubernetes svc type

 ## For minikube, set this to NodePort, elsewhere use LoadBalancer

 ##

 type: LoadBalancer

 ## Use serviceLoadBalancerIP to request a specific static IP,

 ## otherwise leave blank

 ##

 # loadBalancerIP:

 # HTTP Port

 port: 80

 # HTTPS Port

 ## Set this to any value (recommended: 443) to enable the https

service port

 # httpsPort: 443

 ## Use nodePorts to requets some specific ports when usin NodePort

 ## nodePorts:

 ## http: <to set explicitly, choose port between 30000-32767>

 ## https: <to set explicitly, choose port between 30000-32767>

 ##

 # nodePorts:

LEVEL UP YOUR USE OF HELM ON KUBERNETES WITH CHARTS .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 29

. LEVEL UP YOUR USE OF HELM ON KUBERNETES WITH CHARTS

with our unique customizations. Keep exploring what Helm
and Charts have to offer and let me know what you do with
them in the comments.

Links
[1] https://helm.sh/
[2] https://www.cncf.io/
[3] https://opensource.com/article/20/2/kubectl-helm-

commands
[4] https://github.com/helm/helm/releases/tag/v3.1.1
[5] https://github.com/helm/helm
[6] https://helm.sh/docs/intro/using_helm/
[7] https://github.com/helm/charts
[8] https://github.com/helm/charts/blob/master/

CONTRIBUTING.md#technical-requirements
[9] https://artifacthub.io/
[10] https://opensource.com/article/20/2/kubectl-helm-

commands
[11] https://opensource.com/article/18/10/getting-started-

minikube
[12] https://opensource.com/article/19/7/security-scanning-

your-devops-pipeline
[13] https://github.com/helm/charts/tree/master/stable/mediawiki
[14] https://en.wikipedia.org/wiki/YAML

kubectl get svc --namespace default -w jesswiki-mediawiki

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

jesswiki-mediawiki LoadBalancer 10.103.180.70 <pending> 80:30220/TCP 17s

Now that we have the IP, we go ahead and check to see if
it’s up:

Now we have our new wiki up and running, and we can enjoy
our new application with our personal edits. Use the com-
mand from the output above to get the password and start
to fill in your wiki.

Conclusion
Helm is a powerful package manager that makes installing
and uninstalling applications on top of Kubernetes as simple
as a single command. Charts add to the experience by giv-
ing us curated and tested templates to install applications

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://helm.sh/
https://www.cncf.io/
https://opensource.com/article/20/2/kubectl-helm-commands
https://opensource.com/article/20/2/kubectl-helm-commands
https://github.com/helm/helm/releases/tag/v3.1.1
https://github.com/helm/helm
https://helm.sh/docs/intro/using_helm/
https://github.com/helm/charts
https://github.com/helm/charts/blob/master/CONTRIBUTING.md#technical-requirements
https://github.com/helm/charts/blob/master/CONTRIBUTING.md#technical-requirements
https://artifacthub.io/
https://opensource.com/article/20/2/kubectl-helm-commands
https://opensource.com/article/20/2/kubectl-helm-commands
https://opensource.com/article/18/10/getting-started-minikube
https://opensource.com/article/18/10/getting-started-minikube
https://opensource.com/article/19/7/security-scanning-your-devops-pipeline
https://opensource.com/article/19/7/security-scanning-your-devops-pipeline
https://github.com/helm/charts/tree/master/stable/mediawiki
https://en.wikipedia.org/wiki/YAML

30 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

A GOOD AMOUNT OF MY DAY-TO-DAY involves creating,
modifying, and deploying Helm charts to

manage the deployment of applications. Helm is an appli-
cation package manager for Kubernetes, which coordinates
the download, installation, and deployment of apps. Helm
charts [1] are the way we can define an application as a col-
lection of related Kubernetes resources.

So why would anyone use Helm? Helm makes manag-
ing the deployment of applications easier inside Kubernetes
through a templated approach. All Helm charts follow the
same structure while still having a structure flexible enough
to represent any type of application you could run on Ku-
bernetes. Helm also supports versioning since deployment
needs are guaranteed to change with time. The alternative is
to use multiple configuration files that you manually apply to
your Kubernetes cluster to bring an application up. If we’ve
learned anything from seeing infrastructure as code [2], it’s
that manual processes inevitably lead to errors. Helm charts
give us a chance to apply that same lesson to the world of
Kubernetes.

In this example, we’ll be walking through using Helm with
minikube, a single-node testing environment for Kuberne-
tes. We will make a small Nginx web server application.
For this example, I have minikube version 1.9.2 and Helm
version 3.0.0 installed on my Linux laptop. To get set up, do
the following.

• Download and configure minikube by following the excel-
lent documentation here [3].

• Download and configure Helm using your favorite package
manager listed here [4] or manually from the releases [5].

Create a Helm chart
Start by confirming we have the prerequisites installed:

$ which helm ## this can be in any folder as long as it returns

in the path

/usr/local/bin/helm

$ minikube status ## if it shows Stopped, run `minikube start`

host: Running

kubelet: Running

apiserver: Running

kubeconfig: Configured

Starting a new Helm chart requires one simple command:

$ helm create mychartname

For the purposes of this tutorial, name the chart buildachart:

$ helm create buildachart

Creating buildachart

$ ls buildachart/

Chart.yaml charts/ templates/ values.yaml

Examine the chart’s structure
Now that you have created the chart, take a look at its structure
to see what’s inside. The first two files you see—Chart.yaml
and values.yaml—define what the chart is and what values
will be in it at deployment.

Look at Chart.yaml, and you can see the outline of a Helm
chart’s structure:

apiVersion: v2

name: buildachart

description: A Helm chart for Kubernetes

A chart can be either an 'application' or a 'library' chart.

#

Application charts are a collection of templates that can be

packaged into versioned archives to be deployed.

#

Library charts provide useful utilities or functions for the

chart developer. They're included as a dependency of

application charts to inject those utilities and functions

into the rendering pipeline. Library charts do not define any

templates and therefore cannot be deployed.

type: application

How to make a Helm chart
in 10 minutes
Write a simple Helm chart for Kubernetes in about 10 minutes.

HOW TO MAKE A HELM CHART IN 10 MINUTES .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://helm.sh/docs/topics/charts/
https://opensource.com/article/19/7/infrastructure-code
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://github.com/helm/helm#install
https://github.com/helm/helm/releases

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 31

. HOW TO MAKE A HELM CHART IN 10 MINUTES

imagePullSecrets: []

nameOverride: ""

fullnameOverride: ""

serviceAccount:

 # Specifies whether a service account should be created

 create: true

 # Annotations to add to the service account

 annotations: {}

 # The name of the service account to use.

 # If not set and create is true, a name is generated using the

 # fullname template

 name:

podSecurityContext: {}

 # fsGroup: 2000

securityContext: {}

 # capabilities:

 # drop:

 # - ALL

 # readOnlyRootFilesystem: true

 # runAsNonRoot: true

 # runAsUser: 1000

service:

 type: ClusterIP

 port: 80

ingress:

 enabled: false

 annotations: {}

 # kubernetes.io/ingress.class: nginx

 # kubernetes.io/tls-acme: "true"

 hosts:

 - host: chart-example.local

 paths: []

 tls: []

 # - secretName: chart-example-tls

 # hosts:

 # - chart-example.local

resources: {}

 # We usually recommend not to specify default resources and to

 # leave this as a conscious choice for the user. This also

 # increases chances charts run on environments with little

 # resources, such as Minikube. If you do want to specify

 # resources, uncomment the following lines, adjust them as

 # necessary, and remove the curly braces after 'resources:'.

 # limits:

 # cpu: 100m

 # memory: 128Mi

 # requests:

 # cpu: 100m

This is the chart version. This version number should be

incremented each time you make changes to the chart and its

templates, including the app version.

version: 0.1.0

This is the version number of the application being deployed.

This version number should be incremented each time you make

changes to the application.

appVersion: 1.16.0

The first part includes the API version that the chart is using
(this is required), the name of the chart, and a description
of the chart. The next section describes the type of chart
(an application by default), the version of the chart you will
deploy, and the application version (which should be incre-
mented as you make changes).

The most important part of the chart is the template di-
rectory. It holds all the configurations for your application
that will be deployed into the cluster. As you can see below,
this application has a basic deployment, ingress, service
account, and service. This directory also includes a test di-
rectory, which includes a test for a connection into the app.
Each of these application features has its own template
files under templates/:

$ ls templates/

NO TES.txt _helpers.tpl deployment.yaml ingress.yaml

service.yaml serviceaccount.yaml tests/

There is another directory, called charts, which is empty.
It allows you to add dependent charts that are needed to
deploy your application. Some Helm charts for applications
have up to four extra charts that need to be deployed with
the main application. When this happens, the values file is
updated with the values for each chart so that the applica-
tions will be configured and deployed at the same time. This
is a far more advanced configuration (which I will not cover
in this introductory article), so leave the charts/ folder empty.

Understand and edit values
Template files are set up with formatting that collects deploy-
ment information from the values.yaml file. Therefore, to
customize your Helm chart, you need to edit the values file.
By default, the values.yaml file looks like:

Default values for buildachart.

This is a YAML-formatted file.

Declare variables to be passed into your templates.

replicaCount: 1

image:

 repository: nginx

 pullPolicy: IfNotPresent

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

32 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

After:

imagePullSecrets: []

nameOverride: "cherry-awesome-app"

fullnameOverride: "cherry-chart"

Accounts
Service accounts provide a user identity to run in the pod
inside the cluster. If it’s left blank, the name will be generated
based on the full name using the helpers.tpl file. I recom-
mend always having a service account set up so that the
application will be directly associated with a user that is con-
trolled in the chart.

As an administrator, if you use the default service ac-
counts, you will have either too few permissions or too many
permissions, so change this.

Before:

serviceAccount:

 # Specifies whether a service account should be created

 create: true

 # Annotations to add to the service account

 annotations: {}

 # The name of the service account to use.

 # If not set and create is true, a name is generated using

 # the fullname template

 Name:

After:

serviceAccount:

 # Specifies whether a service account should be created

 create: true

 # Annotations to add to the service account

 annotations: {}

 # The name of the service account to use.

 # If not set and create is true, a name is generated using

 # the fullname template

 Name: cherrybomb

Security
You can configure pod security to set limits on what type
of filesystem group to use or which user can and cannot
be used. Understanding these options is important to se-
curing a Kubernetes pod, but for this example, I will leave
this alone.

podSecurityContext: {}

 # fsGroup: 2000

securityContext: {}

 # capabilities:

 # drop:

 # - ALL

 # memory: 128Mi

nodeSelector: {}

tolerations: []

affinity: {}

Basic configurations
Beginning at the top, you can see that the replicaCount is
automatically set to 1, which means that only one pod will
come up. You only need one pod for this example, but you
can see how easy it is to tell Kubernetes to run multiple pods
for redundancy.

The image section has two things you need to look at: the
repository where you are pulling your image and the pull-
Policy. The pullPolicy is set to IfNotPresent; which means
that the image will download a new version of the image if
one does not already exist in the cluster. There are two other
options for this: Always, which means it will pull the image
on every deployment or restart (I always suggest this in case
of image failure), and Latest, which will always pull the most
up-to-date version of the image available. Latest can be useful
if you trust your image repository to be compatible with your
deployment environment, but that’s not always the case.

Change the value to Always.
Before:

image:
 repository: nginx
 pullPolicy: IfNotPresent

After:

image:

 repository: nginx

 pullPolicy: Always

Naming and secrets
Next, take a look at the overrides in the chart. The first override
is imagePullSecrets, which is a setting to pull a secret, such as
a password or an API key you’ve generated as credentials for
a private registry. Next are nameOverride and fullnameOver-
ride. From the moment you ran helm create, its name (builda-
chart) was added to a number of configuration files—from
the YAML ones above to the templates/helper.tpl file. If you
need to rename a chart after you create it, this section is the
best place to do it, so you don’t miss any configuration files.

Change the chart’s name using overrides.
Before:

imagePullSecrets: []

nameOverride: ""

fullnameOverride: ""

HOW TO MAKE A HELM CHART IN 10 MINUTES .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 33

 # readOnlyRootFilesystem: true

 # runAsNonRoot: true

 # runAsUser: 1000

Networking
There are two different types of networking options in this chart.
One uses a local service network with a ClusterIP address,
which exposes the service on a cluster-internal IP. Choosing
this value makes the service associated with your application
reachable only from within the cluster (and through ingress,
which is set to false by default). The other networking option
is NodePort, which exposes the service on each Kubernetes
node’s IP address on a statically assigned port. This option is
recommended for running minikube [6], so use it for this how-to.

Before:

service:

 type: ClusterIP

 port: 80

ingress:

 enabled: false

After:

service:

 type: NodePort

 port: 80

ingress:

 enabled: false

Resources
Helm allows you to explicitly allocate hardware resources.
You can configure the maximum amount of resources a
Helm chart can request and the highest limits it can receive.
Since I’m using Minikube on a laptop, I’ll set a few limits by
removing the curly braces and the hashes to convert the
comments into commands.

Before:

resources: {}

 # We usually recommend not to specify default resources and to

 # leave this as a conscious choice for the user. This also

 # increases chances charts run on environments with little

 # resources, such as Minikube. If you do want to specify

 # resources, uncomment the following lines, adjust them as

 # necessary, and remove the curly braces after 'resources:'.

 # limits:

 # cpu: 100m

 # memory: 128Mi

 # requests:

 # cpu: 100m

 # memory: 128Mi

After:

resources:

 # We usually recommend not to specify default resources and

 # to leave this as a conscious choice for the user. This also

 # increases chances charts run on environments with little

 # resources, such as Minikube. If you do want to specify

 # resources, uncomment the following lines, adjust them as

 # necessary, and remove the curly braces after 'resources:'.

 limits:

 cpu: 100m

 memory: 128Mi

 requests:

 cpu: 100m

 memory: 128Mi

Tolerations, node selectors, and affinities
These last three values are based on node configurations.
Although I cannot use any of them in my local configuration,
I’ll still explain their purpose.

nodeSelector comes in handy when you want to as-
sign part of your application to specific nodes in your
Kubernetes cluster. If you have infrastructure-specific
applications, you set the node selector name and match
that name in the Helm chart. Then, when the applica-
tion is deployed, it will be associated with the node that
matches the selector.

Tolerations, tainting, and affinities work together to en-
sure that pods run on separate nodes. Node affinity [7] is a
property of pods that attracts them to a set of nodes (either
as a preference or a hard requirement). Taints are the oppo-
site—they allow a node to repel a set of pods.

In practice, if a node is tainted, it means that it is not work-
ing properly or may not have enough resources to hold the
application deployment. Tolerations are set up as a key/val-
ue pair watched by the scheduler to confirm a node will work
with a deployment.

Node affinity is conceptually similar to nodeSelector: it
allows you to constrain which nodes your pod is eligible
to be scheduled based on labels on the node. However,
the labels differ because they match rules that apply to
scheduling [8].

nodeSelector: {}

tolerations: []

affinity: {}

Deploy ahoy!
Now that you’ve made the necessary modifications to create
a Helm chart, you can deploy it using a Helm command, add
a name point to the chart, add a values file, and send it to a
namespace:

. HOW TO MAKE A HELM CHART IN 10 MINUTES

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity

34 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

HOW TO MAKE A HELM CHART IN 10 MINUTES .

Congratulations! You’ve deployed an Nginx web server by
using a Helm chart!

There is a lot to learn as you explore what Helm charts can
do. If you want to double-check your work, visit my example
repository on GitHub [9].

Links
[1] https://helm.sh/docs/topics/charts/
[2] https://opensource.com/article/19/7/infrastructure-code
[3] https://kubernetes.io/docs/tasks/tools/install-minikube/
[4] https://github.com/helm/helm#install
[5] https://github.com/helm/helm/releases
[6] https://kubernetes.io/docs/setup/learning-environment/

minikube/
[7] https://kubernetes.io/docs/concepts/configuration/assign-

pod-node/#node-affinity-beta-feature
[8] https://kubernetes.io/docs/concepts/configuration/assign-

pod-node/#node-affinity
[9] https://github.com/Alynder/build_a_chart

$ helm install my-cherry-chart buildachart/ --values

buildachart/values.yaml

Release "my-cherry-chart" has been upgraded. Happy Helming!

The command’s output will give you the next steps to con-
nect to the application, including setting up port forwarding so
you can reach the application from your localhost. To follow
those instructions and connect to an Nginx load balancer:

$ export POD_NAME=$(kubectl get pods -l "app.kubernetes.io/

name=buildachart,app.kubernetes.io/instance=my-cherry-chart"

-o jsonpath="{.items[0].metadata.name}")

$ echo "Visit http://127.0.0.1:8080 to use your application"

Visit http://127.0.0.1:8080 to use your application

$ kubectl port-forward $POD_NAME 8080:80

Forwarding from 127.0.0.1:8080 -> 80

Forwarding from [::1]:8080 -> 80

View the deployed application
To view your application, open your web browser:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/Alynder/build_a_chart
https://helm.sh/docs/topics/charts/
https://opensource.com/article/19/7/infrastructure-code
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://github.com/helm/helm#install
https://github.com/helm/helm/releases
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity
https://github.com/Alynder/build_a_chart

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 35

. BASIC KUBECTL AND HELM COMMANDS FOR BEGINNERS

RECENTLY, my husband was telling me about
an upcoming job interview where

he would have to run through some basic commands on
a computer. He was anxious about the interview, but the
best way for him to learn and remember things has always
been to equate the thing he doesn’t know to something
very familiar to him. Because our conversation happened
right after I was roaming the grocery store trying to decide
what to cook that evening, it inspired me to write about
kubectl and Helm commands by equating them to an ordi-
nary trip to the grocer.

Helm [1] is a tool to manage applications within Kuberne-
tes. You can easily deploy charts with your application infor-
mation, allowing them to be up and preconfigured in minutes
within your Kubernetes environment. When you’re learning
something new, it’s always helpful to look at chart examples
to see how they are used, so if you have time, take a look at
these stable charts [2].

Kubectl [3] is a command line that interfaces with Kuber-
netes environments, allowing you to configure and manage
your cluster. It does require some configuration to work within
environments, so take a look through the documentation [4]
to see what you need to do.

I’ll use namespaces in the examples, which you can learn
about in my article Kubernetes namespaces for beginners [5].

Now that we have that settled, let’s start shopping for basic
kubectl and Helm commands!

Helm list
What is the first thing you do before you go to the store?
Well, if you’re organized, you make a list. LIkewise, this is
the first basic Helm command I will explain.

In a Helm-deployed application, list provides details about
an application’s current release. In this example, I have one
deployed application—the Jenkins CI/CD application. Run-
ning the basic list command always brings up the default

namespace. Since I don’t have anything deployed in the de-
fault namespace, nothing shows up:

$ helm list

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

However, if I run the command with an extra flag, my appli-
cation and information appear:

$ helm list --all-namespaces

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

jenkins jenkins 1 2020-01-18 16:18:07 EST deployed jenkins-1.9.4 lts

Finally, I can direct the list command to check only the name-
space I want information from:

$ helm list --namespace jenkins

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

jenkins jenkins 1 2020-01-18 16:18:07 EST deployed jenkins-1.9.4 lts

Now that I have a list and know what is on it, I can go and get
my items with get commands! I’ll start with the Kubernetes
cluster; what can I get from it?

Kubectl get
The kubectl get command gives information about many
things in Kubernetes, including pods, nodes, and namespac-
es. Again, without a namespace flag, you’ll always land in
the default. First, I’ll get the namespaces in the cluster to see
what’s running:

$ kubectl get namespaces

NAME STATUS AGE

default Active 53m

jenkins Active 44m

kube-node-lease Active 53m

Basic kubectl and Helm commands
for beginners
Take a trip to the grocery store to shop for the commands you’ll need to get started with these
Kubernetes tools.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://helm.sh/
https://github.com/helm/charts/tree/master/stable
https://kubernetes.io/docs/reference/kubectl/kubectl/
https://kubernetes.io/docs/reference/kubectl/overview/
https://opensource.com/article/19/12/kubernetes-namespaces

36 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

BASIC KUBECTL AND HELM COMMANDS FOR BEGINNERS .

This produces a ton of data, so I always recommend keeping
a copy of a Helm chart so you can look over the templates
in the chart. I also create my own values to see what I have
in place.

Now that I have all my goodies in my shopping cart, I’ll
check the labels that describe what’s in them. These ex-
amples pertain only to kubectl, and they describe what I’ve
deployed through Helm.

Kubectl describe
As I did with the get command, which can describe just about
anything in Kubernetes, I’ll limit my examples to namespac-
es, pods, and nodes. Since I know I’m working with one of
each, this will be easy.

$ kubectl describe ns jenkins

Name: jenkins

Labels: <none>

Annotations: <none>

Status: Active

No resource quota.

No resource limits.

I can see my namespace’s name and that it is active and has
no resource nor quote limits.

The describe pods command produces a large amount
of information, so I’ll provide a small snip of the output. If you
run the command without the pod name, it will return infor-

kube-public Active 53m

kube-system Active 53m

Now that I have the namespaces running in my environment,
I’ll get the nodes and see how many are running:

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready master 55m v1.16.2

I have one node up and running, mainly because my Mini-
kube is running on one small server. To get the pods running
on my one node:

$ kubectl get pods

No resources found in default namespace.

Oops, it’s empty. I’ll get what’s in my Jenkins namespace
with:

$ kubectl get pods --namespace jenkins

NAME READY STATUS RESTARTS AGE

jenkins-7fc688c874-mh7gv 1/1 Running 0 40m

Good news! There’s one pod, it hasn’t restarted, and it has
been running for 40 minutes. Well, since I know the pod is
up, I want to see what I can get from Helm.

Helm get
Helm get is a little more complicated because this get com-
mand requires more than an application name, and you can
request multiple things from applications. I’ll begin by getting
the values used to make the application, and then I’ll show a
snip of the get all action, which provides all the data related
to the application.

$ helm get values jenkins -n jenkins

USER-SUPPLIED VALUES:

null

Since I did a very minimal stable-only install, the configura-
tion didn’t change. If I run the all command, I get everything
out of the chart:

$ helm get all jenkins -n jenkins

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 37

. BASIC KUBECTL AND HELM COMMANDS FOR BEGINNERS

mation for all of the pods in the namespace, which can be
overwhelming. So, be sure you always include the pod name
with this command. For example:

$ kubectl describe pods jenkins-7fc688c874-mh7gv --namespace

jenkins

This provides (among many other things) the status of the
container, how the container is managed, the label, and the
image used in the pod. The data not in this abbreviated
output includes resource requests and limits along with any
conditions, init containers, and storage volume information
applied in a Helm values file. This data is useful if your ap-
plication is crashing due to inadequate resources, a con-
figured init container that runs a prescript for configuration,
or generated hidden passwords that shouldn’t be in a plain
text YAML file.

Finally, I’ll use describe node, which (of course) describes
the node. Since this example has just one, named Minikube,
that is what I’ll use; if you have multiple nodes in your envi-
ronment, you must include the node name of interest.

As with pods, the node command produces an abundance
of data, so I’ll include just a snip of the output.

$ kubectl describe node minikube

Note that describe node is one of the more important ba-
sic commands. As this image shows, the command returns
statistics that indicate when the node is running out of re-
sources, and this data is excellent for alerting you when
you need to scale up (if you do not have autoscaling in your
environment). Other things not in this snippet of output in-
clude the percentages of requests made for all resources
and limits, as well as the age and allocation of resources
(e.g., for my application).

Checking out
With these commands, I’ve finished my shopping and
gotten everything I was looking for. Hopefully, these ba-
sic commands can help you, too, in your day-to-day with
Kubernetes.

I urge you to work with the command line often and learn
the shorthand flags available in the Help sections, which you
can access by running these commands:

$ helm --help

and

$ kubectl -h

Peanut butter and jelly
Some things just go together like peanut butter and jelly.
Helm and kubectl are a little like that.

I often use these tools in my environment. Because they
have many similarities in a ton of places, after using one, I
usually need to follow up with the other. For example, I can
do a Helm deployment and watch it fail using kubectl. Try
them together, and see what they can do for you.

Links
[1] https://helm.sh/
[2] https://github.com/helm/charts/tree/master/stable
[3] https://kubernetes.io/docs/reference/kubectl/kubectl/
[4] https://kubernetes.io/docs/reference/kubectl/overview/
[5] https://opensource.com/article/19/12/kubernetes-

namespaces

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://helm.sh/
https://github.com/helm/charts/tree/master/stable
https://kubernetes.io/docs/reference/kubectl/kubectl/
https://kubernetes.io/docs/reference/kubectl/overview/
https://opensource.com/article/19/12/kubernetes-namespaces
https://opensource.com/article/19/12/kubernetes-namespaces

38 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

KNATIVE [1] is an open source community project
that adds components to Kubernetes [2]

for deploying, running, and managing serverless, cloud-na-
tive [3] applications. It enables more productive development
with less interaction with Kubernetes’ infrastructure.

There is a large amount of information out there about
Knative, networking, and serverless deployments, and this
introductory tutorial covers just a bite-size amount of it. In
this walkthrough, I’ll use Knative with Minikube [4] to create
a Knative app—a simple container that prints messages in
response to a curl command or in a web browser at a link
provided by the deployment.

First, some background
Knative uses custom resource definitions (CRDs), a network
layer, and a service core. For this walkthrough, I used Ubun-
tu 18.04, Kubernetes 1.19.0, Knative 0.17.2, and Kourier [5]
0.17.0 as the Knative networking layer, as well as the Kna-
tive command-line interface (CLI).

A CRD is a custom resource definition within Kubernetes.
A resource is an endpoint in the Kubernetes API that stores
a collection of API objects of a certain kind; for example, the
built-in pod’s resource contains a collection of pod objects.
This allows an expansion of the Kubernetes API with new
definitions. One example is the Knative serving core, which
is defined to have internal autoscaling and rapid deployment
of pods with the correct roles and access predefined.

Kourier is an Ingress [6] (a service to let in external net-
work traffic) for Knative serving and a lightweight alternative
for the Istio [7] ingress. Its deployment consists only of an
Envoy proxy [8] and a control plane for it.

To understand the concepts in this tutorial, I recommend
you are somewhat familiar with:

• Serverless, cloud-native applications
• Ingress with Envoy proxies, i.e., Istio
• DNS in Kubernetes
• Kubernetes patching configurations
• Custom resource definitions in Kubernetes
• Configuring YAML files for Kubernetes

Set up and installation
There are some prerequisites you must do before you can
use Knative.

Configure Minikube
Before doing anything else, you must configure Minikube to
run Knative locally in your homelab. Below are the configura-
tions I suggest and the commands to set them:

$ minikube config set kubernetes-version v1.19.0

$ minikube config set memory 4000

$ minikube config set cpus 4

To make sure those configurations are set up correctly in
your environment, run the Minikube commands to delete and
start your cluster:

$ minikube delete

$ minikube start

Install the Knative CLI
You need the Knative CLI to make a deployment, and you
need Go v1.14 [9] or later to work with the CLI. I created
a separate directory to make it easier to find and install
these tools. Use the following commands to set up the
command line:

$ mkdir knative

$ cd knative/

$ git clone https://github.com/knative/client.git

$ cd client/

$ hack/build.sh -f

$ sudo cp kn /usr/local/bin

$ kn version

Version: v20201018-local-40a84036

Build Date: 2020-10-18 20:00:37

Git Revision: 40a84036

Supported APIs:

* Serving

 - serving.knative.dev/v1 (knative-serving v0.18.0)

Create your first Knative app
Knative is a great way to get started quickly on serverless development with Kubernetes.

CREATE YOUR FIRST KNATIVE APP .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://knative.dev/
https://opensource.com/resources/what-is-kubernetes
https://en.wikipedia.org/wiki/Cloud_native_computing
https://minikube.sigs.k8s.io/docs/
https://github.com/knative-sandbox/net-kourier
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://istio.io/
https://www.envoyproxy.io/
https://golang.org/doc/install

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 39

. CREATE YOUR FIRST KNATIVE APP

$ kubectl get deployments -n kourier-system

NAME READY UP-TO-DATE AVAILABLE AGE

3scale-kourier-gateway 1/1 1 1 110m

Next, configure the Knative serving to use Kourier as default.
If you don’t set this, the external networking traffic will not
function. Set it with this kubectl patch command:

$ kubectl patch configmap/config-network \

 --namespace knative-serving \

 --type merge \

 --patch ' {"data":{"ingress.class":"kourier.ingress.

networking.knative.dev"}}'

Configure the DNS
Before you can access the load balancer, you need to
run the minikube tunnel command in a separate terminal
window. This command creates a route to services de-
ployed with type LoadBalancer and sets their Ingress to
their ClusterIP. Without this command, you will never get
an External-IP from the load balancer. Your output will
look like this:

Status:

 machine: minikube

 pid: 57123

 route: 10.96.0.0/12 -> 192.168.39.67

 minikube: Running

 services: [kourier]

 errors:

 minikube: no errors

 router: no errors

 loadbalancer emulator: no errors

Status:

 machine: minikube

 pid: 57123

 route: 10.96.0.0/12 -> 192.168.39.67

 minikube: Running

 services: [kourier]

 errors:

 minikube: no errors

 router: no errors

 loadbalancer emulator: no errors

Now that the services and deployments are complete,
configure the DNS for the cluster. This enables your
future deployable application to support DNS web ad-
dresses. To configure this, you need to get some infor-
mation from your Kourier service by using the kubectl
get command:

$ kubectl get service kourier -n kourier-system

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

kourier LoadBalancer 10.103.12.15 10.103.12.15 80:32676/TCP,443:30558/TCP

* Eventing

 - sources.knative.dev/v1alpha2 (knative-eventing v0.18.0)

 - eventing.knative.dev/v1beta1 (knative-eventing v0.18.0)

Once the CLI is installed, you can configure Knative in the
Minikube cluster.

Install Knative
Since Knative is composed of CRDs, much of its installation
uses YAML files with kubectl commands. To make this easi-
er, set up some environment variables in the terminal so that
you can get the needed YAML files a little faster and in the
same version:

$ export KNATIVE="0.17.2"

First, apply the service resource definitions:

$ kubectl apply -f https://github.com/knative/serving/releases/

download/v$KNATIVE/serving-crds.yaml

Then apply the core components to Knative:

$ kubectl apply -f https://github.com/knative/serving/releases/

download/v$KNATIVE/serving-core.yaml

This deploys the services and deployments to the name-
space knative-serving. You may have to wait a couple of
moments for the deployment to finish.

To confirm the deployment finished, run the kubectl com-
mand to get the deployments from the namespace:

$ kubectl get deployments -n knative-serving

NAME READY UP-TO-DATE AVAILABLE AGE

3scale-kourier-control 1/1 1 1 107m

activator 1/1 1 1 108m

autoscaler 1/1 1 1 108m

controller 1/1 1 1 108m

webhook 1/1 1 1 108m

Install Kourier
Because you want to use a specific version and collect the
correct YAML file, use another environment variable:

$ export KOURIER="0.17.0"

Then apply your networking layer YAML file:

$ kubectl apply -f https://github.com/knative/net-kourier/

releases/download/v$KOURIER/kourier.yaml

You will find the deployment in the kourier-system name-
space. To confirm the deployment is correctly up and func-
tioning, use the kubectl command to get the deployments:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

40 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

 35.020s unsuccessfully observed a new generation

 35.208s Ready to serve.

Se rvice 'hello' created to latest revision 'hello-dydlw-1' is

available at URL:

http://hello.default.10.103.12.15.nip.io

This shows that the service was deployed with a URL into the
namespace default. You can deploy to another namespace by
running something like the following, then look at the output:

$ kn service create hello --image gcr.io/knative-samples/

helloworld-go --namespace hello

Creating service 'hello' in namespace 'hello':

 0. 015s The Configuration is still working to reflect the latest

desired specification.

 0. 041s The Route is still working to reflect the latest

desired specification.

 0. 070s Configuration "hello" is waiting for a Revision to

become ready.

 5.911s ...

 5.958s Ingress has not yet been reconciled.

 6.043s unsuccessfully observed a new generation

 6.213s Ready to serve.

Se rvice 'hello' created to latest revision 'hello-wpbwj-1' is

available at URL:

http://hello.hello.10.103.12.15.nip.io

Test your new deployment
Check to see if the new service you deployed is up and run-
ning. There are two ways to check:

1. Check your web address in a browser
2. Run a curl command to see what returns

If you check the address in a web browser, you should see
something like this:

(Jess Cherry, CC BY-SA 4.0)
Good! It looks like your application’s frontend is up!

Next, test the curl command to confirm everything works
from the command line. Here is an example of a curl to my
application and the output:

$ curl http://hello.default.10.103.12.15.nip.io

Hello World!

Get the CLUSTER-IP address and save it for the next step.
Next, configure the domain to determine your internal website
on local DNS. (I ended mine in nip.io, and you can also use
xip.io.) This requires another kubectl patch command:

$ kubectl patch configmap -n knative-serving config-domain -p

"{\"data\": {\"10.103.12.15.nip.io\": \"\"}}"

Once it’s patched, you will see this output:

configmap/config-domain patched

Use the Knative CLI
Now that your configurations are done, you can create an
example application to see what happens.

Deploy a service
Earlier in this walkthrough, you installed the Knative CLI, which
is used for Serving and Eventing resources in a Kubernetes
cluster. This means you can deploy a sample application and
manage services and routes. To bring up the command-line
menu, type kn. Here is a snippet of the output:

$ kn

kn is the command line interface for managing Knative Serving

and Eventing resources

 Find more information about Knative at: https://knative.dev

Serving Commands:

 service Manage Knative services

 revision Manage service revisions

 route List and describe service routes

Next, use the Knative CLI to deploy a basic “hello world”
application with a web frontend. Knative provides some ex-
amples you can use; this one does a basic deployment:

kn service create hello --image gcr.io/knative-samples/helloworld-go

Your output should look something like this:

$ kn service create hello --image gcr.io/knative-samples/

helloworld-go

Creating service 'hello' in namespace 'default':

 0. 032s The Configuration is still working to reflect the latest

desired specification.

 0. 071s The Route is still working to reflect the latest

desired specification.

 0. 116s Configuration "hello" is waiting for a Revision to

become ready.

 34.908s ...

 34.961s Ingress has not yet been reconciled.

CREATE YOUR FIRST KNATIVE APP .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 41

. CREATE YOUR FIRST KNATIVE APP

$ kn service delete hello

Service 'hello' successfully deleted in namespace 'default'.

jess@Athena: ~/knative/client$ kn service delete hello

--namespace hello

Service 'hello' successfully deleted in namespace 'hello'.

Make your own app
This walkthrough used an existing Knative example, but you
are probably wondering about making something that you
want. You are right, so I’ll provide this example YAML then
explain how you can apply it with kubectl and manage it with
the Knative CLI.

Example YAML

apiVersion: serving.knative.dev/v1

kind: Service

metadata:

 name: helloworld

 namespace: default

spec:

 template:

 spec:

 containers:

 - image: gcr.io/knative-samples/helloworld-go

 ports:

 - containerPort: 8080

 env:

 - name: TARGET

 value: "This is my app"

Save this to apps.yaml, and then you can make changes
to some things. For example, you can change your meta-
data, name, and namespace. You can also change the value
of the target (which I set to This is my app) so that, rather
than Hello World, you’ll see a new message that says Hello
${TARGET} ! when you deploy the file.

To deploy a file like this, you will have to use kubectl apply
-f apps.yaml.

First, deploy your new service using the apply command:

$ kubectl apply -f apps.yaml

service.serving.knative.dev/helloworld created

Next, you can describe your new deployment, which is the
name provided in the YAML file:

$ kn service describe helloworld

Name: helloworld

Namespace: default

Age: 50s

URL: http://helloworld.default.10.103.12.15.nip.io

Interact with the Knative app
From here, you can use the Knative CLI to make some basic
changes and test the functionality. Describe the service and
check the output:

$ kn service describe hello

Name: hello

Namespace: default

Age: 12h

URL: http://hello.default.10.103.12.15.nip.io

Revisions:

 100% @latest (hello-dydlw-1) [1] (12h)

 Image: gcr.io/knative-samples/helloworld-go (pinned to 5ea96b)

Conditions:

 OK TYPE AGE REASON

 ++ Ready 12h

 ++ ConfigurationsReady 12h

 ++ RoutesReady 12h

It looks like everything is up and ready as you configured
it. Some other things you can do with the Knative CLI
(which won’t show up now due to the minimal configura-
tion in this example) are to describe and list the routes
with the app:

$ kn route describe hello

Name: hello

Namespace: default

Age: 12h

URL: http://hello.default.10.103.12.15.nip.io

Service: hello

Traffic Targets:

 100% @latest (hello-dydlw-1)

Conditions:

 OK TYPE AGE REASON

 ++ Ready 12h

 ++ AllTrafficAssigned 12h

 ++ CertificateProvisioned 12h TLSNotEnabled

 ++ IngressReady 12h

jess@Athena:~/knative/client$ kn route list hello

NAME URL READY

hello http://hello.default.10.103.12.15.nip.io True

This can come in handy later when you need to troubleshoot
issues with your deployments.

Clean up
Just as easily as you deployed your application, you can
clean it up:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

42 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

CREATE YOUR FIRST KNATIVE APP .

Final thoughts
Knative is a great way for developers to move quickly on
serverless development with networking services that allow
users to see changes in apps immediately. It is fun to play
with and lets you take a deeper dive into serverless and oth-
er exploratory uses of Kubernetes!

Links
[1] https://knative.dev/
[2] https://opensource.com/resources/what-is-kubernetes
[3] https://en.wikipedia.org/wiki/Cloud_native_computing
[4] https://minikube.sigs.k8s.io/docs/
[5] https://github.com/knative-sandbox/net-kourier
[6] https://kubernetes.io/docs/concepts/services-networking/

ingress/
[7] https://istio.io/
[8] https://www.envoyproxy.io/
[9] https://golang.org/doc/install

Revisions:

 100% @latest (helloworld-qfr9s) [1] (50s)

 Image: gcr.io/knative-samples/helloworld-go (at 5ea96b)

Conditions:

 OK TYPE AGE REASON

 ++ Ready 43s

 ++ ConfigurationsReady 43s

 ++ RoutesReady 43s

Run a curl command to confirm it produces the new output
you defined in your YAML file:

$ curl http://helloworld.default.10.103.12.15.nip.io

Hello This is my app!

Double-check by going to the simple web frontend.

(Jess Cherry, CC BY-SA 4.0)

This proves your application is running! Congratulations!

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://knative.dev/
https://opensource.com/resources/what-is-kubernetes
https://en.wikipedia.org/wiki/Cloud_native_computing
https://minikube.sigs.k8s.io/docs/
https://github.com/knative-sandbox/net-kourier
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://istio.io/
https://www.envoyproxy.io/
https://golang.org/doc/install
https://creativecommons.org/licenses/by-sa/4.0/

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 43

. A STEP-BY-STEP GUIDE TO KNATIVE EVENTING

IN A PREVIOUS ARTICLE, I covered how to cre-
ate a small app with Knative

[1], which is an open source project that adds components to
Kubernetes [2] for deploying, running, and managing server-
less, cloud-native [3] applications. In this article, I’ll explain
Knative eventing, a way to create, send, and verify events in
your cloud-native environment.

Events can be generated from many sources in your en-
vironment, and they can be confusing to manage or define.
Since Knative follows the CloudEvents [4] specification, it al-
lows you to have one common abstraction point for your en-
vironment, where the events are defined to one specification.

This article explains how to install Knative eventing version
0.20.0 and create, trigger, and verify events. Because there
are many steps involved, I suggest you look at my GitHub
repo [5] to walk through this article with the files.

Set up your configuration
This walkthrough uses Minikube [6] with Kubernetes 1.19.0.
It also makes some configuration changes to the Minikube
environment.

Minikube pre-configuration commands:

$ minikube config set kubernetes-version v1.19.0

$ minikube config set memory 4000

$ minikube config set cpus 4

Before starting Minikube, run the following commands to
make sure your configuration stays and start Minikube:

$ minikube delete

$ minikube start

Install Knative eventing
Install the Knative eventing custom resource definitions
(CRDs) using kubectl. The following shows the command
and a snippet of the output:

$ kubectl apply --filename https://github.com/knative/eventing/

releases/download/v0.20.0/eventing-crds.yaml

cu stomresourcedefinition.apiextensions.k8s.io/apiserversources.

sources.knative.dev created

cu stomresourcedefinition.apiextensions.k8s.io/brokers.eventing.

knative.dev created

cu stomresourcedefinition.apiextensions.k8s.io/channels.

messaging.knative.dev created

cu stomresourcedefinition.apiextensions.k8s.io/triggers.eventing.

knative.dev created

Next, install the core components using kubectl:

$ kubectl apply --filename https://github.com/knative/eventing/

releases/download/v0.20.0/eventing-core.yaml

na mespace/knative-eventing created

se rviceaccount/eventing-controller created

cl usterrolebinding.rbac.authorization.k8s.io/eventing-controller

created

Since you’re running a standalone version of the Knative
eventing service, you must install the in-memory channel to
pass events. Using kubectl, run:

$ kubectl apply --filename https://github.com/knative/eventing/

releases/download/v0.20.0/in-memory-channel.yaml

Install the broker, which utilizes the channels and runs the
event routing:

$ kubectl apply --filename https://github.com/knative/eventing/

releases/download/v0.20.0/mt-channel-broker.yaml

cl usterrole.rbac.authorization.k8s.io/knative-eventing-mt-

channel-broker-controller created

cl usterrole.rbac.authorization.k8s.io/knative-eventing-mt-

broker-filter created

A step-by-step guide to
Knative eventing
Knative eventing is a way to create, send, and verify events in your cloud-native environment.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/11/knative
https://opensource.com/resources/what-is-kubernetes
https://en.wikipedia.org/wiki/Cloud_native_computing
https://cloudevents.io/
https://github.com/Alynder/knative_eventing
https://minikube.sigs.k8s.io/docs/

44 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

A STEP-BY-STEP GUIDE TO KNATIVE EVENTING .

 spec:

 containers:

 - name: event-display

 image: gcr.io/knative-releases/knative.dev/eventing-

contrib/cmd/event_display

kind: Service

apiVersion: v1

metadata:

 name: hello-display

spec:

 selector:

 app: hello-display

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

The goodbye-display YAML code:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: goodbye-display

spec:

 replicas: 1

 selector:

 matchLabels: &labels

 app: goodbye-display

 template:

 metadata:

 labels: *labels

 spec:

 containers:

 - name: event-display

 # Source code: https://github.com/knative/eventing-

contrib/tree/master/cmd/event_display

 image: gcr.io/knative-releases/knative.dev/eventing-

contrib/cmd/event_display

kind: Service
apiVersion: v1
metadata:
 name: goodbye-display
spec:
 selector:
 app: goodbye-display
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

Next, create a namespace and add a small broker to it; this
broker routes events to triggers. Create your namespace us-
ing kubectl:

$ kubectl create namespace eventing-test

namespace/eventing-test created

Now create a small broker named default in your name-
space. The following is the YAML from my broker.yaml file
(which can be found in my GitHub repository):

apiVersion: eventing.knative.dev/v1
kind: broker
metadata:
 name: default
 namespace: eventing-test

Then apply your broker file using kubectl:

$ kubectl create -f broker.yaml

 broker.eventing.knative.dev/default created

Verify that everything is up and running (you should see the
confirmation output) after you run the command:

$ kubectl -n eventing-test get broker default

NAME URL AGE READY REASON

default http://broker-ingress.knative-eventing.

svc.cluster.local/eventing-test/default 3m6s True

You’ll need this URL from the broker output later for sending
events, so save it.

Create event consumers
Now that everything is installed, you can start configuring the
components to work with events.

First, you need to create event consumers. You’ll cre-
ate two consumers in this walkthrough: hello-display and
goodbye-display. Having two consumers allows you to see
how to target a consumer per event message.

The hello-display YAML code:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-display
spec:
 replicas: 1
 selector:
 matchLabels: &labels
 app: hello-display
 template:
 metadata:
 labels: *labels

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 45

. A STEP-BY-STEP GUIDE TO KNATIVE EVENTING

The differences in the YAML between the two consumers
are in the app and metadata name sections. While both
consumers are on the same ports, you can target one
when generating an event. Create the consumers using
kubectl:

$ kubectl -n eventing-test apply -f hello-display.yaml

deployment.apps/hello-display created

service/hello-display created

$ kubectl -n eventing-test apply -f goodbye-display.yaml

deployment.apps/goodbye-display created

service/goodbye-display created

Check to make sure the deployments are running after
you’ve applied the YAML files:

$ kubectl -n eventing-test get deployments hello-display

goodbye-display

NAME READY UP-TO-DATE AVAILABLE AGE

hello-display 1/1 1 1 2m4s

goodbye-display 1/1 1 1 34s

Create triggers
Now, you need to create the triggers, which define the
events the consumer receives. You can define triggers
to use any filter from your cloud events. The broker re-
ceives events from the trigger and sends the events to
the correct consumer. This set of examples creates two
triggers with different definitions. For example, you can
send events with the attribute type greeting to the hel-
lo-display consumer.

The greeting-trigger.yaml code:

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

 name: hello-display

spec:

 broker: default

 filter:

 attributes:

 type: greeting

 subscriber:

 ref:

 apiVersion: v1

 kind: Service

 name: hello-display

To create the first trigger, apply your YAML file:

$ kubectl -n eventing-test apply -f greeting-trigger.yaml

trigger.eventing.knative.dev/hello-display created

Next, make the second trigger using sendoff-trigger.yaml.
This sends anything with the attribute source sendoff to your
goodbye-display consumer.

The sendoff-trigger.yaml code:

apiVersion: eventing.knative.dev/v1

kind: Trigger

metadata:

 name: goodbye-display

spec:

 broker: default

 filter:

 attributes:

 source: sendoff

 subscriber:

 ref:

 apiVersion: v1

 kind: Service

 name: goodbye-display

Next, apply your second trigger definition to the cluster:

$ kubectl -n eventing-test apply -f sendoff-trigger.yaml

trigger.eventing.knative.dev/goodbye-display created

Confirm everything is correctly in place by getting your trig-
gers from the cluster using kubectl:

$ kubectl -n eventing-test get triggers

NAME BROKER SUBSCRIBER_URI AGE READY

goodbye-display default http://goodbye-display.eventing-test.

 svc.cluster.local/ 24s True

hello-display default http://hello-display.eventing-test.

 svc.cluster.local/ 46s True

Create an event producer
Create a pod you can use to send events. This is a simple
pod deployment with curl and SSH access for you to send
events using curl [7]. Because the broker can be accessed
only from inside the cluster where Knative eventing is in-
stalled, the pod needs to be in the cluster; this is the only
way to send events into the cluster. Use the event-pro-
ducer.yaml file with this code:

apiVersion: v1

kind: Pod

metadata:

 labels:

 run: curl

 name: curl

spec:

 containers:

 - image: radial/busyboxplus:curl

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.redhat.com/sysadmin/use-curl-api

46 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

A STEP-BY-STEP GUIDE TO KNATIVE EVENTING .

Ce is short for CloudEvent, which is the standardized CloudE-
vents specification [8] that Knative follows. You also need to
know the event ID (this is useful to verify it was delivered),
the type, the source (which must specify that it is not a send-
off so that it doesn’t go to the source defined in the sendoff
trigger), and a message.

When you run the command, this should be the output
(and you should receive a 202 Accepted [9] response):

> POST /eventing-test/default HTTP/1.1

> User-Agent: curl/7.35.0

> Host: broker-ingress.knative-eventing.svc.cluster.local

> Accept: */*

> Ce-Id: say-hello

> Ce-Specversion: 1.0

> Ce-Type: greeting

> Ce-Source: not-sendoff

> Content-Type: application/json

> Content-Length: 24

>

< HTTP/1.1 202 Accepted

< Date: Sun, 24 Jan 2021 22:25:25 GMT

< Content-Length: 0

The 202 means the trigger sent it to the hello-display con-
sumer (because of the definition.)

Next, send a second definition to the goodbye-display
consumer with this new curl command:

curl -v " http://broker-ingress.knative-eventing.svc.cluster.

local/eventing-test/default" \

 -X POST \

 -H "Ce-Id: say-goodbye" \

 -H "Ce-Specversion: 1.0" \

 -H "Ce-Type: not-greeting" \

 -H "Ce-Source: sendoff" \

 -H "Content-Type: application/json" \

 -d '{"msg":"Goodbye Knative!"}'

This time, it is a sendoff and not a greeting based on the
previous setup section’s trigger definition. It is directed to the
goodbye-display consumer.

Your output should look like this, with another 202 re-
turned:

> POST /eventing-test/default HTTP/1.1

> User-Agent: curl/7.35.0

> Host: broker-ingress.knative-eventing.svc.cluster.local

> Accept: */*

> Ce-Id: say-goodbye

> Ce-Specversion: 1.0

> Ce-Type: not-greeting

> Ce-Source: sendoff

> Content-Type: application/json

 imagePullPolicy: IfNotPresent

 name: curl

 resources: {}

 stdin: true

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 tty: true

Next, deploy the pod by using kubectl:

$ kubectl -n eventing-test apply -f event-producer.yaml

pod/curl created

To verify, get the deployment and make sure the pod is up
and running:

$ kubectl get pods -n eventing-test

NAME READY STATUS RESTARTS AGE

curl 1/1 Running 0 8m13s

Send some events
Since this article has been so configuration-heavy, I imagine
you’ll be happy to finally be able to send some events and
test out your services. Events have to be passed internally
in the cluster. Usually, events would be defined around appli-
cations internal to the cluster and come from those applica-
tions. But this example will manually send events from your
pod named curl.

Begin by logging into the pod:

$ kubectl -n eventing-test attach curl -it

Once logged in, you’ll see output similar to:

Defaulting container name to curl.

Us e 'kubectl describe pod/curl -n eventing-test' to see all of

the containers in this pod.

If you don't see a command prompt, try pressing enter.

[root@curl:/]$

Now, generate an event using curl. This needs some
extra definitions and requires the broker URL generated
during the installation. This example sends a greeting to
the broker:

curl -v "http://broker-ingress.knative-eventing.svc.cluster.

local/eventing-test/default" \

 -X POST \

 -H "Ce-Id: say-hello" \

 -H "Ce-Specversion: 1.0" \

 -H "Ce-Type: greeting" \

 -H "Ce-Source: not-sendoff" \

 -H "Content-Type: application/json" \

 -d '{"msg":"Hello Knative!"}'

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/cloudevents/spec
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/202

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 47

. A STEP-BY-STEP GUIDE TO KNATIVE EVENTING

Data,

 {

 "msg": "Goodbye Knative!"

 }

It looks like both events made it to their proper locations.
Congratulations—you have officially worked with Knative
eventing!

Bonus round: Send an event to multiple
consumers
So you sent events to each consumer using curl, but what if
you want to send an event to both consumers? This uses a
similar curl command but with some interesting changes. In
the previous triggers, each one was defined with a different
attribute. The greeting trigger had attribute type, and sendoff
trigger had attribute source. This means you can make a curl
call and send it to both consumers.

Here is a curl example of a definition for sending an event
to both consumers:

curl -v "http://broker-ingress.knative-eventing.svc.cluster.

local/eventing-test/default" \

 -X POST \

 -H "Ce-Id: say-hello-goodbye" \

 -H "Ce-Specversion: 1.0" \

 -H "Ce-Type: greeting" \

 -H "Ce-Source: sendoff" \

 -H "Content-Type: application/json" \

 -d '{"msg":"Hello Knative! Goodbye Knative!"}'

As you can see, the definition of this curl command changed
to set the source for goodbye-display and the type for hel-
lo-display.

Here is sample output of what the events look like after
they are sent.

Output of the event being sent:

> POST /eventing-test/default HTTP/1.1

> User-Agent: curl/7.35.0

> Host: broker-ingress.knative-eventing.svc.cluster.local

> Accept: */*

> Ce-Id: say-hello-goodbye

> Ce-Specversion: 1.0

> Ce-Type: greeting

> Ce-Source: sendoff

> Content-Type: application/json

> Content-Length: 41

>

< HTTP/1.1 202 Accepted

< Date: Sun, 24 Jan 2021 23:04:15 GMT

< Content-Length: 0

> Content-Length: 26

>

< HTTP/1.1 202 Accepted

< Date: Sun, 24 Jan 2021 22:33:00 GMT

< Content-Length: 0

Congratulations, you sent two events!
Before moving on to the next section, exit the pod by typ-

ing exit.

Verify the events
Now that the events have been sent, how do you know that
the correct consumers received them? By going to each con-
sumer and verifying it in the logs.

Start with the hello-display consumer::

$ kubectl -n eventing-test logs -l app=hello-display --tail=100

There isn’t much running in this example cluster, so you
should see only one event:

 cloudevents.Event

Validation: valid

Context Attributes,

 specversion: 1.0

 type: greeting

 source: not-sendoff

 id: say-hello

 datacontenttype: application/json

Extensions,

 knativearrivaltime: 2021-01-24T22:25:25.760867793Z

Data,

 {

 "msg": "Hello Knative!"

 }

You’ve confirmed the hello-display consumer received
the event! Now check the goodbye-display consumer and
make sure the other message made it.

Start by running the same command but with good-
bye-display:

$ kubectl -n eventing-test logs -l app=goodbye-display

--tail=100

 cloudevents.Event

Validation: valid

Context Attributes,

 specversion: 1.0

 type: not-greeting

 source: sendoff

 id: say-goodbye

 datacontenttype: application/json

Extensions,

 knativearrivaltime: 2021-01-24T22:33:00.515716701Z

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

48 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

A STEP-BY-STEP GUIDE TO KNATIVE EVENTING .

Extensions,

 knativearrivaltime: 2021-01-24T22:33:00.515716701Z

Data,

 {

 "msg": "Goodbye Knative!"

 }

☁️ cloudevents.Event

Validation: valid

Context Attributes,

 specversion: 1.0

 type: greeting

 source: sendoff

 id: say-hello-goodbye

 datacontenttype: application/json

Extensions,

 knativearrivaltime: 2021-01-24T23:04:15.036352685Z

Data,

 {

 "msg": "Hello Knative! Goodbye Knative!"

 }

As you can see, the event went to both consumers based on
your curl definition. If an event needs to be sent to more than
one place, you can write definitions to send it to more than
one consumer.

Give it a try!
Internal eventing in cloud events is pretty easy to track if it’s
going to a predefined location of your choice. Enjoy seeing
how far you can go with eventing in your cluster!

Links
[1] https://opensource.com/article/20/11/knative
[2] https://opensource.com/resources/what-is-kubernetes
[3] https://en.wikipedia.org/wiki/Cloud_native_computing
[4] https://cloudevents.io/
[5] https://github.com/Alynder/knative_eventing
[6] https://minikube.sigs.k8s.io/docs/
[7] https://www.redhat.com/sysadmin/use-curl-api
[8] https://github.com/cloudevents/spec
[9] https://developer.mozilla.org/en-US/docs/Web/HTTP/

Status/202

Output of hello-display (showing two events):

$ kubectl -n eventing-test logs -l app=hello-display --tail=100

 cloudevents.Event

Validation: valid

Context Attributes,

 specversion: 1.0

 type: greeting

 source: not-sendoff

 id: say-hello

 datacontenttype: application/json

Extensions,

 knativearrivaltime: 2021-01-24T22:25:25.760867793Z

Data,

 {

 "msg": "Hello Knative!"

 }

 cloudevents.Event

Validation: valid

Context Attributes,

 specversion: 1.0

 type: greeting

 source: sendoff

 id: say-hello-goodbye

 datacontenttype: application/json

Extensions,

 knativearrivaltime: 2021-01-24T23:04:15.036352685Z

Data,

 {

 "msg": "Hello Knative! Goodbye Knative!"

 }

Output of goodbye-display (also with two events):

$ kubectl -n eventing-test logs -l app=goodbye-display --tail=100

 cloudevents.Event

Validation: valid

Context Attributes,

 specversion: 1.0

 type: not-greeting

 source: sendoff

 id: say-goodbye

 datacontenttype: application/json

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/20/11/knative
https://opensource.com/resources/what-is-kubernetes
https://en.wikipedia.org/wiki/Cloud_native_computing
https://cloudevents.io/
https://github.com/Alynder/knative_eventing
https://minikube.sigs.k8s.io/docs/
https://www.redhat.com/sysadmin/use-curl-api
https://github.com/cloudevents/spec
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/202
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/202

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 49

. 5 INTERVIEW QUESTIONS EVERY KUBERNETES JOB CANDIDATE SHOULD KNOW

JOB INTERVIEWS are hard for people on
both sides of the table,

but I’ve discovered that interviewing candidates for Kuber-
netes-related jobs has seemed especially hard lately. Why,
you ask? For one thing, it’s hard to find someone who can
answer some of my questions. Also, it has been hard to con-
firm whether they have the right experience, regardless of
their answers to my questions.

I’ll skip over my musings on that topic and get to some
questions that you should ask of any job candidate who
would be working with Kubernetes [1].

What is Kubernetes?
I’ve always found this question to be one of the best ones
to ask in interviews. I always hear, “I work with Kubernetes,”
but when I ask, “what is it?” I never get a confident answer.

My favorite answer is from Chris Short [2]: “Just an API
with some YAML files.”

While he is not wrong, I’ll give you a more detailed version.
Kubernetes is a portable container orchestration tool that is
used to automate the tasks of managing, monitoring, scal-
ing, and deploying containerized applications.

I’ve found that “an orchestration tool for deploying contain-
erized applications” is probably as good as you’re going to
get as an answer, which in my opinion is good enough. While
many believe Kubernetes adds a great deal more, overall, it
offers many APIs to add to this core feature: container or-
chestration.

In my opinion, this is one of the best questions you can ask
in an interview, as it at least proves whether the candidate
knows what Kubernetes is.

What is the difference between a Kubernetes
node and a pod?
This question reveals a great first look at the complexity of
Kubernetes. It shifts the conversation to an architectural
overview and can lead to many interesting follow-up details.

It has also been explained incorrectly to me an innumerable
amount of times.

A node [3] is the worker machine. This machine can be a
virtual machine (VM) or a physical machine, depending on
whether you are running on a hypervisor or on bare metal.
The node contains services to run containers, including the
kubelet, kube-proxy, and container runtime.

A pod [4] includes (1) one or more containers (2) with
shared network (3) and storage (4) and the specification
on how to run the containers deployed together. All four
of these details are important. For bonus points, an appli-
cant could mention that, technically, a pod is the smallest
deployable unit Kubernetes can create and manage—not
a container.

The best short answer I’ve received for this question is: “The
node is the worker, and the pod is the thing the containers are
in.” The distinction matters. Most of a Kubernetes administra-
tor’s job depends on knowing when to deploy what, and nodes
can be very, very expensive, depending on where they are run.
I wouldn’t want someone deploying nodes over and over when
what they needed to do was deploy a bunch of pods.

What is kubectl? (And how do you pronounce it?)
This question is one of my higher priority questions, but it
may not be relevant for you and your team. In my organiza-
tion, we don’t use a graphical interface to manage our Ku-
bernetes environments, which means command-line actions
are all we do.

So what is kubectl [5]? It is the command-line interface
to Kubernetes. You can get and set anything from there,
from gathering logs and events to editing deployments
and secrets. It’s always helpful to pop in a random ques-
tion about how to use this tool to test the interviewee’s
familiarity with kubectl.

How do you pronounce it? Well, that’s up to you (there’s a
big disagreement on the matter), but I will gladly point you to
this great video presentation by my friend Waldo [6].

5 interview questions every
Kubernetes job candidate should know

If you’re interviewing people for Kubernetes-related roles, here’s what to ask and why it matters.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kubernetes.io/
https://twitter.com/ChrisShort
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/reference/kubectl/kubectl/
https://opensource.com/article/18/12/kubectl-definitive-pronunciation-guide

50 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

5 INTERVIEW QUESTIONS EVERY KUBERNETES JOB CANDIDATE SHOULD KNOW

mum set of things you should know when you are asking
candidates interview questions. The next set of questions
should come from a large list of questions based on your
specific team, environment, and organization. As you think
through these, try to find interesting questions about how
technology interacts with each other to see how people
think through infrastructure challenges. Think about recent
challenges your team had (outages), ask to walk through
deployments step-by-step, or about strategies to improve
something your team actively wants to improve (like a re-
duction to deployment time). The less abstract the ques-
tions, the more your asking about skills that will actually
matter after the interview.

No two environments will be the same, and this also ap-
plies when you are interviewing people. I mix up questions
in every interview. I also have a small environment I can
use to test interviewees. I always find that answering the
questions is the easiest part, and doing the work is the real
test you need to give.

My last bit of advice for anyone giving interviews: If you
meet someone who has potential but none of the experi-
ence, give them a chance to prove themselves. I wouldn’t
have the knowledge and experience I have today if some-
one hadn’t seen the potential of what I could do and given
me an opportunity.

Links
[1] https://kubernetes.io/
[2] https://twitter.com/ChrisShort
[3] https://kubernetes.io/docs/concepts/architecture/nodes/
[4] https://kubernetes.io/docs/concepts/workloads/pods/pod/
[5] https://kubernetes.io/docs/reference/kubectl/kubectl/
[6] https://opensource.com/article/18/12/kubectl-definitive-

pronunciation-guide
[7] https://opensource.com/resources/what-docker

Watch the video

What is a namespace?
I haven’t received an answer to this question on multiple
interviews. I am not sure that namespaces are used as of-
ten in other environments as they are in the organization
I work in. I’ll give a short answer here: a namespace is a
virtual cluster in a pod. This abstraction is what enables you
to keep several virtual clusters in various environments for
isolation purposes.

What is a container?
It always helps to know what is being deployed in your pod,
because what’s a deployment without knowing what you’re
deploying in it? A container is a standard unit of software that
packages up code and all its dependencies. Two optional
secondary answers I have received and am OK with include:
a) a slimmed-down image of an OS and b) an application
running in a limited OS environment. Bonus points if you can
name orchestration software that uses containers other than
Docker [7], like your favorite public cloud’s container service.

Other questions
If you’re wondering why I didn’t add more to this list of ques-
tions, I have an easy answer for you: these are the mini-

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://kubernetes.io/
https://twitter.com/ChrisShort
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/reference/kubectl/kubectl/
https://opensource.com/article/18/12/kubectl-definitive-pronunciation-guide
https://opensource.com/article/18/12/kubectl-definitive-pronunciation-guide
https://opensource.com/resources/what-docker
https://youtu.be/2wgAIvXpJqU
https://youtu.be/2wgAIvXpJqU
https://opensource.com/resources/what-docker

A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM 51

CONTAINERS have taken the world by storm.
Whether you think of Kuberne-

tes, Docker, CoreOS, Silverblue, or Flatpak when you hear
the term, it’s clear that modern applications are running in
containers for convenience, security, and scalability.

Containers can be confusing to understand, though. What
does it mean to run in a container? How can processes in a
container interact with the rest of the computer they’re run-
ning on? Open source dislikes mystery, so this article ex-
plains the backend of container technology, just as my article
on Flatpak [1] explained a common frontend.

Namespaces
Namespaces are common in the programming world. If you
dwell in the highly technical places of the computer world,
then you have probably seen code like this:

using namespace std;

Or you may have seen this in XML:

<book xmlns="http://docbook.org/ns/docbook" xml:lang="en">

These kinds of phrases provide context for commands
used later in a source code file. The only reason C++
knows, for instance, what programmers mean when they
type cout is because C++ knows the cout namespace is a
meaningful word.

If that’s too technical for you to picture, you may be sur-
prised to learn that we all use namespaces every day in
real life, too. We don’t call them namespaces, but we use
the concept all the time. For instance, the phrase “I’m a fan
of the Enterprise” has one meaning in an IT company that
serves large businesses (which are commonly called “en-
terprises”), but it may have a different meaning at a science
fiction convention. The question “what engine is it running?”
has one meaning in a garage and a different meaning in web

development. We don’t always declare a namespace in ca-
sual conversation because we’re human, and our brains can
adapt quickly to determine context, but for computers, the
namespace must be declared explicitly.

For containers, a namespace is what defines the boundar-
ies of a process’ “awareness” of what else is running around it.

lsns
You may not realize it, but your Linux machine quietly main-
tains different namespaces specific to given processes. By
using a recent version of the util-linux package, you can list
existing namespaces on your machine:

$ lsns

 NS TYPE NPROCS PID USER COMMAND

4026531835 cgroup 85 1571 seth /usr/lib/systemd/systemd --user

4026531836 pid 85 1571 seth /usr/lib/systemd/systemd --user

4026531837 user 80 1571 seth /usr/lib/systemd/systemd --user

4026532601 user 1 6266 seth /usr/lib64/firefox/firefox [...]

4026532928 net 1 7164 seth /usr/lib64/firefox/firefox [...]

[...]

If your version of util-linux doesn’t provide the lsns com-
mand, you can see namespace entries in /proc:

$ ls /proc/*/ns

1571

6266

7164

[...]

$ ls /proc/6266/ns

ipc net pid user uts [...]

Each process running on your Linux machine is enumerated
with a process ID (PID). Each PID is assigned a namespace.
PIDs in the same namespace can have access to one anoth-
er because they are programmed to operate within a given

Demystifying namespaces and
containers in Linux

 BY SETH KENLON

Peek behind the curtains to understand the backend of Linux container technology.

. .DEMYSTIFYING NAMESPACES AND CONTAINERS IN LINUX

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/how-build-flatpak-packaging

52 A GUIDE TO KUBERNETES FOR SRES AND SYSADMINS ... CC BY-SA 4.0 ... OPENSOURCE.COM

DEMYSTIFYING NAMESPACES AND CONTAINERS IN LINUX .

process, for the initialization application (systemd on most
distributions outside of Slackware, Devuan, and maybe some
customized installations of Arch). It’s next to impossible for
Zsh, or any application that isn’t a boot initialization applica-
tion, to be PID 1 (because without an init system, a computer
wouldn’t know how to boot up). Yet, as far as your shell knows
in this demonstration, Zsh occupies the PID 1 slot.

Despite what your shell is now telling you, PID 1 on your
system has not been replaced. Open a second terminal or
terminal tab on your computer and look at PID 1:

$ ps 1

init

And then find the PID of Zsh:

$ pidof zsh

7723

As you can see, your “host” system sees the big picture and
understands that Zsh is actually running as some high-num-
bered PID (it probably won’t be 7723 on your computer, ex-
cept by coincidence). Zsh sees itself as PID 1 only because
its scope is confined to (or contained within) its namespace.
Once you have forked a process into its own namespace, its
children processes are numbered starting from 1, but only
within that namespace.

Namespaces, along with other technologies like cgroups
and more, form the foundation of containerization. Under-
standing that namespaces exist within the context of the wid-
er namespace of a host environment (in this demonstration,
that’s your computer, but in the real world the host is typically
a server or a hybrid cloud) can help you understand how and
why containerized applications act the way they do. For in-
stance, a container running a Wordpress blog doesn’t “know”
it’s not running in a container; it knows that it has access
to a kernel and some RAM and whatever configuration files
you’ve provided it, but it probably can’t access your home
directory or any directory you haven’t specifically given it
permission to access. Furthermore, a runaway process with-
in that blog software can’t affect any other process on your
system, because as far as it knows, the PID “tree” only goes
back to 1, and 1 is the container it’s running in.

Containers are a powerful Linux feature, and they’re get-
ting more popular every day. Now that you understand how
they work, try exploring container technology such as Kuber-
netes, Silverblue, or Flatpak, and see what you can do with
containerized apps. Containers are Linux, so start them up,
inspect them carefully, and learn as you go.

Links
[1] https://opensource.com/article/19/10/how-build-flatpak-

packaging
[2] https://opensource.com/article/19/9/getting-started-zsh

namespace. PIDs in different namespaces are unable to in-
teract with one another by default because they are running
in a different context, or namespace. This is why a process
running in a “container” under one namespace cannot ac-
cess information outside its container or information running
inside a different container.

Creating a new namespace
A usual feature of software dealing with containers is automat-
ic namespace management. A human administrator starting
up a new containerized application or environment doesn’t
have to use lsns to check which namespaces exist and then
create a new one manually; the software using PID name-
spaces does that automatically with the help of the Linux ker-
nel. However, you can mimic the process manually to gain a
better understanding of what’s happening behind the scenes.

First, you need to identify a process that is not running on
your computer. For this example, I’ll use the Z shell (Zsh) [2]
because I’m running the Bash shell on my machine. If you’re
running Zsh on your computer, then use Bash or tcsh or
some other shell that you’re not currently running. The goal
is to find something that you can prove is not running. You
can prove something is not running with the pidof command,
which queries your system to discover the PID of any appli-
cation you name:

$ pidof zsh

$ sudo pidof zsh

As long as no PID is returned, the application you have que-
ried is not running.

Unshare
The unshare command runs a program in a namespace
unshared from its parent process. There are many kinds of
namespaces available, so read the unshare man page for
all options available.

To create a new namespace for your test command:

$ sudo unshare --fork --pid --mount-proc zsh

%

Because Zsh is an interactive shell, it conveniently brings you
into its namespace upon launch. Not all processes do that,
because some processes run in the background, leaving you
at a prompt in its native namespace. As long as you remain
in the Zsh session, you can see that you have left the usual
namespace by looking at the PID of your new forked process:

% pidof zsh

pid 1

If you know anything about Linux process IDs, then you know
that PID 1 is always reserved, mostly by nature of the boot

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/how-build-flatpak-packaging
https://opensource.com/article/19/10/how-build-flatpak-packaging
https://opensource.com/article/19/9/getting-started-zsh
https://opensource.com/article/19/9/getting-started-zsh

