
A practical guide to
learning GNU Awk

Opensource.com

http://www.opensource.com

OPENSOURCE.COM .

2 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: opensource.com/story

Email us: open@opensource.com

http://www.opensource.com
https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.opensource.com
http://www.opensource.com
http://opensource.com
http://opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 3

Jim Hall
Lazarus Lazaridis
Dave Neary
Moshe Zadka

CONTRIBUTORS

SETH KENLON is an independent multimedia artist, free culture
advocate, and UNIX geek. He has worked in the

film and computing industry, often at the same time. He is one of the maintainers
of the Slackware-based multimedia production project, http://slackermedia.info.

DAVE MORRISS is a retired IT Manager now contributing to
the “Hacker Public Radio” community podcast

(http://hackerpublicradio.org) as a podcast host and an administrator.

ROBERT YOUNG is the Owner and Principal Consultant at Lab
Insights, LLC. He has led dozens of laboratory

informatics and data manage projects over the last 10 years. Robert Holds a degree
in Cell Biology/Biochemistry and a masters in Bioinformatics.

. ABOUT THE AUTHORS

AUTHORS SETH KENLON, DAVE MORRISS, AND ROBERT YOUNG

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://www.imdb.com/name/nm1244992
http://people.redhat.com/skenlon
http://slackermedia.info
http://hackerpublicradio.org

CONTENTS .

4 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

CHAPTERS

LEARN

PRACTICE

CHEAT SHEET

What is awk? 5

Getting started with awk, a powerful text-parsing tool 6

Fields, records, and variables in awk 8

A guide to intermediate awk scripting 11

How to use loops in awk 13

How to use regular expressions in awk 15

4 ways to control the flow of your awk script 18

Advance your awk skills with two easy tutorials 21

How to remove duplicate lines from files with awk 24

Awk one-liners and scripts to help you sort text files 26

A gawk script to convert smart quotes 29

Drinking coffee with AWK 31

 GNU awk cheat sheet 33

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 5

. WHAT IS AWK?

AWK is a programming language and a POSIX [1]
specification that originated at AT&T Bell Lab-

oratories in 1977. Its name comes from the initials of its
designers: Aho, Weinberger, and Kernighan. awk features
user-defined functions, multiple input streams, TCP/IP
networking access, and a rich set of regular expressions.
It’s often used to process raw text files, interpreting the
data it finds as records and fields to be manipulated by
the user.

At its most basic, awk searches files for some unit of text
(usually lines terminated with an end-of-line character) con-
taining some user-specified pattern. When a line matches
one of the patterns, awk performs some set of user-defined
actions on that line, then processes input lines until the end
of the input files.

awk is used as a command as often as it is used as an
interpreted script. One-liners are popular and useful ways
of filtering output from files or output streams or as stand-
alone commands. awk even has an interactive mode of sorts
because, without input, it acts upon any line the user types
into the terminal:

$ awk '/foo/ { print toupper($0); }'
This line contains bar.
This line contains foo.
THIS LINE CONTAINS FOO.

However, awk is a programming language with user-defined
functions, loops, conditionals, flow control, and more. It’s ro-
bust enough as a language that it has been used to program
a wiki and even (believe it or not) a retargetable assembler
for eight-bit microprocessors.

Why use awk?
awk may seem outdated in a world fortunate enough to have
Python available by default on several major operating sys-
tems, but its longevity is well-earned. In many ways, pro-
grams written in awk are different from programs in other
languages because awk is data-driven. That is, you describe

to awk what data you want to work with and then what you
want it to do when such data is found. There are no boiler-
plate constructors to create, no elaborate class structure to
design, no stream objects to create. awk is built for a specific
purpose, so there’s a lot you can take for granted and allow
awk to handle.

What’s the difference between awk and gawk?
Awk is an open source POSIX specification, so anyone can
(in theory) implement a version of the command and lan-
guage. On Linux or any system that provides GNU awk [2],
the command to invoke awk is gawk, but it’s symlinked
to the generic command awk. The same is true for sys-
tems that provide nawk or mawk or any other variety of
awk implementation. Most versions of awk implement
the core functionality and literal functions defined by the
POSIX spec, although they may add special new features
not present in others. For that reason, there’s some risk
of learning one implementation and coming to rely on a
special feature, but this “problem” is tempered by the fact
that most of them are open source, so they usually can be
installed as needed.

Learning awk
There are many great resources for learning awk. The GNU
awk manual, GAWK: Effective awk programming [3], is a
definitive guide to the language. You can find many other
tutorials for awk [4] on Opensource.com, including “Getting
started with awk, a powerful text-parsing tool.” [5]

Links
[1] https://opensource.com/article/19/7/what-posix-richard-

stallman-explains
[2] https://www.gnu.org/software/gawk/
[3] https://www.gnu.org/software/gawk/manual/
[4] https://opensource.com/sitewide-search?search_api_

views_fulltext=awk
[5] https://opensource.com/article/19/10/intro-awk

What is awk?
awk is known for its robust ability to process and interpret data from text files.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/7/what-posix-richard-stallman-explains
https://www.gnu.org/software/gawk/
https://www.gnu.org/software/gawk/manual/
https://opensource.com/sitewide-search?search_api_views_fulltext=awk
https://opensource.com/article/19/10/intro-awk
https://opensource.com/article/19/7/what-posix-richard-stallman-explains
https://opensource.com/article/19/7/what-posix-richard-stallman-explains
https://www.gnu.org/software/gawk/
https://www.gnu.org/software/gawk/manual/
https://opensource.com/sitewide-search?search_api_views_fulltext=awk
https://opensource.com/sitewide-search?search_api_views_fulltext=awk
https://opensource.com/article/19/10/intro-awk

6 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

GETTING STARTED WITH AWK, A POWERFUL TEXT-PARSING TOOL .

AWK IS A POWERFUL text-parsing tool for Unix and
Unix-like systems, but because it has

programmed functions that you can use to perform com-
mon parsing tasks, it’s also considered a programming
language. You probably won’t be developing your next
GUI application with awk, and it likely won’t take the place
of your default scripting language, but it’s a powerful utility
for specific tasks.

What those tasks may be is surprisingly diverse. The best
way to discover which of your problems might be best solved
by awk is to learn awk; you’ll be surprised at how awk can
help you get more done but with a lot less effort.

Awk’s basic syntax is:

awk [options] 'pattern {action}' file

To get started, create this sample file and save it as colours.txt

name color amount
apple red 4
banana yellow 6
strawberry red 3
grape purple 10
apple green 8
plum purple 2
kiwi brown 4
potato brown 9
pineapple yellow 5

This data is separated into columns by one or more spac-
es. It’s common for data that you are analyzing to be
organized in some way. It may not always be columns
separated by whitespace, or even a comma or semico-
lon, but especially in log files or data dumps, there’s gen-
erally a predictable pattern. You can use patterns of data
to help awk extract and process the data that you want
to focus on.

Printing a column
In awk, the print function displays whatever you specify.
There are many predefined variables you can use, but some
of the most common are integers designating columns in a
text file. Try it out:

$ awk '{print $2;}' colours.txt
color
red
yellow
red
purple
green
purple
brown
brown
yellow

In this case, awk displays the second column, denoted by
$2. This is relatively intuitive, so you can probably guess that
print $1 displays the first column, and print $3 displays the
third, and so on.

To display all columns, use $0.
The number after the dollar sign ($) is an expression, so

$2 and $(1+1) mean the same thing.

Conditionally selecting columns
The example file you’re using is very structured. It has a row
that serves as a header, and the columns relate directly to
one another. By defining conditional requirements, you can
qualify what you want awk to return when looking at this
data. For instance, to view items in column 2 that match “yel-
low” and print the contents of column 1:

awk '$2=="yellow"{print $1}' colours.txt
banana
pineapple

Getting started with awk,
a powerful text-parsing tool
Let’s jump in and start using it.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 7

. GETTING STARTED WITH AWK, A POWERFUL TEXT-PARSING TOOL

apple,green,8
plum,purple,2
kiwi,brown,4
potato,brown,9
pineapple,yellow,5

Awk can treat the data in exactly the same way, as long as
you specify which character it should use as the field separa-
tor in your command. Use the --field-separator (or just -F for
short) option to define the delimiter:

$ awk -F"," '$2=="yellow" {print $1}' file1.csv
banana
pineapple
Saving output

Using output redirection, you can write your results to a file.
For example:

$ awk -F, '$3>5 {print $1, $2} colours.csv > output.txt

This creates a file with the contents of your awk query.
You can also split a file into multiple files grouped by col-

umn data. For example, if you want to split colours.txt into
multiple files according to what color appears in each row,
you can cause awk to redirect per query by including the
redirection in your awk statement:

$ awk '{print > $2".txt"}' colours.txt

This produces files named yellow.txt, red.txt, and so on.

Regular expressions work as well. This conditional looks
at $2 for approximate matches to the letter p followed by
any number of (one or more) characters, which are in turn
followed by the letter p:

$ awk '$2 ~ /p.+p/ {print $0}' colours.txt
grape purple 10
plum purple 2

Numbers are interpreted naturally by awk. For instance,
to print any row with a third column containing an integer
greater than 5:

awk '$3>5 {print $1, $2}' colours.txt
name color
banana yellow
grape purple
apple green
potato brown

Field separator
By default, awk uses whitespace as the field separator.
Not all text files use whitespace to define fields, though.
For example, create a file called colours.csv with this
content:

name,color,amount
apple,red,4
banana,yellow,6
strawberry,red,3
grape,purple,10

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

8 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

FIELDS, RECORDS, AND VARIABLES IN AWK .

AWK COMES in several varieties: There is the
original awk, written in 1977 at

AT&T Bell Laboratories, and several reimplementations,
such as mawk, nawk, and the one that ships with most Li-
nux distributions, GNU awk, or gawk. On most Linux dis-
tributions, awk and gawk are synonyms referring to GNU
awk, and typing either invokes the same awk command.
See the GNU awk user’s guide [1] for the full history of
awk and gawk.

The first article in this series showed that awk is invoked
on the command line with this syntax:

$ awk [options] 'pattern {action}' inputfile

Awk is the command, and it can take options (such as -F
to define the field separator). The action you want awk to
perform is contained in single quotes, at least when it’s
issued in a terminal. To further emphasize which part of
the awk command is the action you want it to take, you
can precede your program with the -e option (but it’s not
required):

$ awk -F, -e '{print $2;}' colours.txt
yellow
blue
green
[...]

Records and fields
Awk views its input data as a series of records, which are
usually newline-delimited lines. In other words, awk general-
ly sees each line in a text file as a new record. Each record
contains a series of fields. A field is a component of a record
delimited by a field separator.

By default, awk sees whitespace, such as spaces, tabs,
and newlines, as indicators of a new field. Specifically, awk

treats multiple space separators as one, so this line contains
two fields:

raspberry red

As does this one:

tuxedo black

Other separators are not treated this way. Assuming that the
field separator is a comma, the following example record con-
tains three fields, with one probably being zero characters long
(assuming a non-printable character isn’t hiding in that field):

a,,b

The awk program
The program part of an awk command consists of a series
of rules. Normally, each rule begins on a new line in the pro-
gram (although this is not mandatory). Each rule consists of
a pattern and one or more actions:

pattern { action }

In a rule, you can define a pattern as a condition to control
whether the action will run on a record. Patterns can be sim-
ple comparisons, regular expressions, combinations of the
two, and more.

For instance, this will print a record only if it contains the
word “raspberry”:

$ awk '/raspberry/ { print $0 }' colours.txt
raspberry red 99

If there is no qualifying pattern, the action is applied to every
record.

Fields, records,
and variables in awk
In the second article in this intro to awk series, learn about
fields, records, and some powerful awk variables.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.gnu.org/software/gawk/manual/html_node/History.html#History

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 9

. FIELDS, RECORDS, AND VARIABLES IN AWK

The format argument (or format string) defines how each of
the other arguments will be output. It uses format specifiers
to do this, including %s to output a string and %d to output a
decimal number. The following printf statement outputs the
record followed by the number of fields in parentheses:

$ awk 'printf "%s (%d)\n",$0,NF}' colours.txt
name color amount (3)
raspberry red 4 (3)
banana yellow 6 (3)
[...]

In this example, %s (%d) provides the structure for each
line, while $0,NF defines the data to be inserted into the %s
and %d positions. Note that, unlike with the print function,
no newline is generated without explicit instructions. The es-
cape sequence \n does this.

Awk scripting
All of the awk code in this article has been written and exe-
cuted in an interactive Bash prompt. For more complex pro-
grams, it’s often easier to place your commands into a file or
script. The option -f FILE (not to be confused with -F, which
denotes the field separator) may be used to invoke a file
containing a program.

For example, here is a simple awk script. Create a file
called example1.awk with this content:

/^a/ {print "A: " $0}
/^b/ {print "B: " $0}

It’s conventional to give such files the extension .awk to
make it clear that they hold an awk program. This naming
is not mandatory, but it gives file managers and editors (and
you) a useful clue about what the file is.

Run the script:

$ awk -f example1.awk colours.txt
A: raspberry red 4
B: banana yellow 6
A: apple green 8

A file containing awk instructions can be made into a script
by adding a #! line at the top and making it executable. Cre-
ate a file called example2.awk with these contents:

#!/usr/bin/awk -f
#
Print all but line 1 with the line number on the front
#

NR > 1 {
 printf "%d: %s\n",NR,$0
}

Also, a rule can consist of only a pattern, in which case the
entire record is written as if the action was { print }.

Awk programs are essentially data-driven in that actions
depend on the data, so they are quite a bit different from
programs in many other programming languages.

The NF variable
Each field has a variable as a designation, but there are
special variables for fields and records, too. The variable NF
stores the number of fields awk finds in the current record.
This can be printed or used in tests. Here is an example us-
ing the text file [2] from the previous article:

$ awk '{ print $0 " (" NF ")" }' colours.txt
name color amount (3)
apple red 4 (3)
banana yellow 6 (3)
[...]

Awk’s print function takes a series of arguments (which
may be variables or strings) and concatenates them to-
gether. This is why, at the end of each line in this example,
awk prints the number of fields as an integer enclosed by
parentheses.

The NR variable
In addition to counting the fields in each record, awk also
counts input records. The record number is held in the vari-
able NR, and it can be used in the same way as any other
variable. For example, to print the record number before
each line:

$ awk '{ print NR ": " $0 }' colours.txt
1: name color amount
2: apple red 4
3: banana yellow 6
4: raspberry red 3
5: grape purple 10
[...]

Note that it’s acceptable to write this command with no spac-
es other than the one after print, although it’s more difficult
for a human to parse:

$ awk '{print NR": "$0}' colours.txt

The printf() function
For greater flexibility in how the output is formatted, you can
use the awk printf() function. This is similar to printf in C,
Lua, Bash, and other languages. It takes a format argument
followed by a comma-separated list of items. The argument
list may be enclosed in parentheses.

$ printf format, item1, item2, ...

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/intro-awk

10 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

FIELDS, RECORDS, AND VARIABLES IN AWK .

writing an awk script with more than one rule and at least
one conditional pattern. If you want to try more functions
than just print and printf, refer to the gawk manual [3]
online.

Here’s an idea to get you started:

#!/usr/bin/awk -f
#
Print each record EXCEPT
IF the first record contains "raspberry",
THEN replace "red" with "pi"

$1 == "raspberry" {
 gsub(/red/,"pi")
}

{ print }

Try this script to see what it does, and then try to write
your own.

Links
[1] https://www.gnu.org/software/gawk/manual/html_node/

History.html#History
[2] https://opensource.com/article/19/10/intro-awk
[3] https://www.gnu.org/software/gawk/manual/

Arguably, there’s no advantage to having just one line in
a script, but sometimes it’s easier to execute a script than
to remember and type even a single line. A script file also
provides a good opportunity to document what a command
does. Lines starting with the # symbol are comments, which
awk ignores.

Grant the file executable permission:

$ chmod u+x example2.awk

Run the script:

$./example2.awk colours.txt
2: apple red 4
2: banana yellow 6
4: raspberry red 3
5: grape purple 10
[...]

An advantage of placing your awk instructions in a script file
is that it’s easier to format and edit. While you can write awk
on a single line in your terminal, it can get overwhelming
when it spans several lines.

Try it
You now know enough about how awk processes your in-
structions to be able to write a complex awk program. Try

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/gawk/manual/html_node/History.html#History
https://www.gnu.org/software/gawk/manual/html_node/History.html#History
https://opensource.com/article/19/10/intro-awk
https://www.gnu.org/software/gawk/manual/

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 11

THIS ARTICLE explores awk’s capabilities,
which are easier to use now

that you know how to structure your command into an ex-
ecutable script.

Logical operators and conditionals
You can use the logical operators and (written &&) and or
(written ||) to add specificity to your conditionals.

For example, to select and print only records with the string
“purple” in the second column and an amount less than five
in the third column:

$2 == "purple" && $3 < 5 {print $1}

If a record has “purple” in column two but a value greater
than or equal to 5 in column three, then it is not selected.
Similarly, if a record matches column three’s requirement but
lacks “purple” in column two, it is also not selected.

Next command
Say you want to select every record in your file where the
amount is greater than or equal to eight and print a matching
record with two asterisks (**). You also want to flag every
record with a value between five (inclusive) and eight with
only one asterisk (*). There are a few ways to do this, and
one way is to use the next command to instruct awk that
after it takes an action, it should stop scanning and proceed
to the next record.

Here’s an example:

NR == 1 {
 print $0;
 next;
}

$3 >= 8 {
 printf "%s\t%s\n", $0, "**";

 next;
}

$3 >= 5 {
 printf "%s\t%s\n", $0, "*";
 next;
}

$3 < 5 {
 print $0;
}

BEGIN command
The BEGIN command lets you print and set variables before
awk starts scanning a text file. For instance, you can set the
input and output field separators inside your awk script by
defining them in a BEGIN statement. This example adapts
the simple script from the previous article for a file with fields
delimited by commas instead of whitespace:

#!/usr/bin/awk -f
#
Print each record EXCEPT
IF the first record contains "raspberry",
THEN replace "red" with "pi"

BEGIN {
 FS=",";
}

$1 == "raspberry" {
 gsub(/red/,"pi")
}

END command
The END command, like BEGIN, allows you to perform
actions in awk after it completes its scan through the text

A guide to intermediate
awk scripting
Learn how to structure commands into executable scripts.

. A GUIDE TO INTERMEDIATE AWK SCRIPTING

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

12 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

A GUIDE TO INTERMEDIATE AWK SCRIPTING .

df -l | awk -f total.awk

The used and available variables act like variables in many
other programming languages. You create them arbitrarily
and without declaring their type, and you add values to them
at will. At the end of the loop, the script adds the records in
the respective columns together and prints the totals.

Math
As you can probably tell from all the logical operators and
casual calculations so far, awk does math quite naturally.
This arguably makes it a very useful calculator for your
terminal. Instead of struggling to remember the rather un-
usual syntax of bc, you can just use awk along with its
special BEGIN function to avoid the requirement of a file
argument:

$ awk 'BEGIN { print 2*21 }'
42
$ awk 'BEGIN {print 8*log(4) }'
11.0904

Admittedly, that’s still a lot of typing for simple (and not so
simple) math, but it wouldn’t take much effort to write a fron-
tend, which is an exercise for you to explore.

file you are processing. If you want to print cumulative re-
sults of some value in all records, you can do that only
after all records have been scanned and processed.

The BEGIN and END commands run only once each. All
rules between them run zero or more times on each record.
In other words, most of your awk script is a loop that is exe-
cuted at every new line of the text file you’re processing, with
the exception of the BEGIN and END rules, which run before
and after the loop.

Here is an example that wouldn’t be possible without the
END command. This script accepts values from the output of
the df Unix command and increments two custom variables
(used and available) with each new record.

$1 != "tempfs" {
 used += $3;
 available += $4;
}

END {
 printf "%d GiB used\n%d GiB available\n",
used/2^20, available/2^20;
}

Save the script as total.awk and try it:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 13

. HOW TO USE LOOPS IN AWK

AWK SCRIPTS have three main sections: the
optional BEGIN and END func-

tions and the functions you write that are executed on each
record. In a way, the main body of an awk script is a loop,
because the commands in the functions run for each record.
However, sometimes you want to run commands on a record
more than once, and for that to happen, you must write a loop.

There are several kinds of loops, each serving a unique
purpose.

While loop
A while loop tests a condition and performs commands
while the test returns true. Once a test returns false, the
loop is broken.

#!/bin/awk -f

BEGIN {
 # Loop through 1 to 10

 i=1;
 while (i <= 10) {
 print i, " to the second power is ", i*i;
 i = i+1;
 }
exit;
}

In this simple example, awk prints the square of whatever
integer is contained in the variable i. The while (i <= 10)
phrase tells awk to perform the loop only as long as the value
of i is less than or equal to 10. After the final iteration (while i
is 10), the loop ends.

Do while loop
The do while loop performs commands after the keyword
do. It performs a test afterward to determine whether the

stop condition has been met. The commands are repeated
only while the test returns true (that is, the end condition has
not been met). If a test fails, the loop is broken because the
end condition has been met.

#!/usr/bin/awk -f
BEGIN {

 i=2;
 do {
 print i, " to the second power is ", i*i;
 i = i + 1
 }
 while (i < 10)

exit;
}

For loops
There are two kinds of for loops in awk.

One kind of for loop initializes a variable, performs a test,
and increments the variable together, performing commands
while the test is true.

#!/bin/awk -f

BEGIN {
 for (i=1; i <= 10; i++) {
 print i, " to the second power is ", i*i;
 }
exit;
}

Another kind of for loop sets a variable to successive indices
of an array, performing a collection of commands for each
index. In other words, it uses an array to “collect” data from
a record.

How to use loops in awk
Learn how to use different types of loops to run commands on a record multiple times.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

14 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

HOW TO USE LOOPS IN AWK .

The third column of the sample data file contains the num-
ber of items listed in the first column. You can use an array
and a for loop to tally the items in the third column by
color:

#! /usr/bin/awk -f

BEGIN {
 FS=" ";
 OFS="\t";
 print("color\tsum");
}
NR != 1 {
 a[$2]+=$3;
}
END {
 for (b in a) {
 print b, a[b]
 }
}

As you can see, you are also printing a header column in the
BEFORE function (which always happens only once) prior to
processing the file.

Loops
Loops are a vital part of any programming language, and
awk is no exception. Using loops can help you control how
your awk script runs, what information it’s able to gather,
and how it processes your data. Our next article will cover
switch statements, continue, and next.

This example implements a simplified version of the Unix
command uniq. By adding a list of strings into an array called
a as a key and incrementing the value each time the same
key occurs, you get a count of the number of times a string ap-
pears (like the --count option of uniq). If you print the keys of
the array, you get every string that appears one or more times.

For example, using the demo file colours.txt (from the
previous articles):

name color amount
apple red 4
banana yellow 6
raspberry red 99
strawberry red 3
grape purple 10
apple green 8
plum purple 2
kiwi brown 4
potato brown 9
pineapple yellow 5

Here is a simple version of uniq -c in awk form:

#! /usr/bin/awk -f

NR != 1 {
 a[$2]++
}
END {
 for (key in a) {
 print a[key] " " key
 }
}

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 15

IN AWK, egular expressions (regex) allow for dy-
namic and complex pattern definitions.

You’re not limited to searching for simple strings but also
patterns within patterns.

The syntax for using regular expressions to match lines
in awk is:

word ~ /match/

The inverse of that is not matching a pattern:

word !~ /match/

If you haven’t already, create the sample file from our
previous article:

name color amount
apple red 4
banana yellow 6
strawberry red 3
raspberry red 99
grape purple 10
apple green 8
plum purple 2
kiwi brown 4
potato brown 9
pineapple yellow 5

Save the file as colours.txt and run:

$ awk -e '$1 ~ /p[el]/ {print $0}' colours.txt
apple red 4
grape purple 10
apple green 8
plum purple 2
pineapple yellow 5

You have selected all records containing the letter p followed
by either an e or an l.

Adding an o inside the square brackets creates a new
pattern to match:

$ awk -e '$1 ~ /p[o]/ {print $0}' colours.txt
apple red 4
grape purple 10
apple green 8
plum purple 2
pineapple yellow 5
potato brown 9

Regular expression basics
Certain characters have special meanings when they’re
used in regular expressions.

Anchors
Anchor Function

^ Indicates the beginning of the line

$ Indicates the end of a line

\A Denotes the beginning of a string

\z Denotes the end of a string

\b Marks a word boundary

For example, this awk command prints any record contain-
ing an r character:

$ awk -e '$1 ~ /r/ {print $0}' colours.txt
strawberry red 3
raspberry red 99
grape purple 10

Add a ^ symbol to select only records where r occurs at the
beginning of the line:

$ awk -e '$1 ~ /^r/ {print $0}' colours.txt
raspberry red 99

How to use regular
expressions in awk
Use regex to search code using dynamic and complex pattern definitions.

. HOW TO USE REGULAR EXPRESSIONS IN AWK

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

16 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

HOW TO USE REGULAR EXPRESSIONS IN AWK .

Many quantifiers modify the character sets that precede
them. For example, . means any character that appears ex-
actly once, but .* means any or no character. Here’s an ex-
ample; look at the regex pattern carefully:

$ printf "red\nrd\n"
red
rd
$ printf "red\nrd\n" | awk -e '$0 ~ /^r.d/ {print}'
red
$ printf "red\nrd\n" | awk -e '$0 ~ /^r.*d/ {print}'
red
rd

Similarly, numbers in braces specify the number of times
something occurs. To find records in which an e character
occurs exactly twice:

$ awk -e '$2 ~ /e{2}/ {print $0}' colours.txt
apple green 8

Grouped matches
Quantifier Function
(red) Parentheses indicate that the enclosed

letters must appear contiguously
| Means or in the context of a grouped

match

For instance, the pattern (red) matches the word red and
ordered but not any word that contains all three of those
letters in another order (such as the word order).

Awk like sed with sub() and gsub()
Awk features several functions that perform find-and-replace
actions, much like the Unix command sed. These are func-
tions, just like print and printf, and can be used in awk rules
to replace strings with a new string, whether the new string
is a string or a variable.

The sub function substitutes the first matched entity (in a
record) with a replacement string. For example, if you have
this rule in an awk script:

{ sub(/apple/, "nut", $1);
 print $1 }

running it on the example file colours.txt produces this output:

name
nut
banana
raspberry
strawberry
grape
nut

Characters
Character Function
[ad] Selects a or d
[a-d] Selects any character a through d (a, b, c, or d)
[^a-d] Selects any character except a through d

(e, f, g, h…)
\w Selects any word
\s Selects any whitespace character
\d Selects any digit

The capital versions of w, s, and d are negations; for exam-
ple, \D does not select any digit.

POSIX [1] regex offers easy mnemonics for character
classes:

POSIX
mnemonic

Function

[:alnum:] Alphanumeric characters
[:alpha:] Alphabetic characters
[:space:] Space characters (such as space, tab, and

formfeed)
[:blank:] Space and tab characters
[:upper:] Uppercase alphabetic characters
[:lower:] Lowercase alphabetic characters
[:digit:] Numeric characters
[:xdigit:] Characters that are hexadecimal digits
[:punct:] Punctuation characters (i.e., characters

that are not letters, digits, control
characters, or space characters)

[:cntrl:] Control characters
[:graph:] Characters that are both printable and

visible (e.g., a space is printable but not
visible, whereas an a is both)

[:print:] Printable characters (i.e., characters that
are not control characters)

Quantifiers
Quantifier Function
. Matches any character
+ Modifies the preceding set to mean

one or more times
* Modifies the preceding set to mean

zero or more times
? Modifies the preceding set to mean

zero or one time
{n} Modifies the preceding set to mean

exactly n times
{n,} Modifies the preceding set to mean

n or more times
{n,m} Modifies the preceding set to mean

between n and m times

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/7/what-posix-richard-stallman-explains

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 17

. HOW TO USE REGULAR EXPRESSIONS IN AWK

This searches for the group of characters Awk and stores it
in memory, represented by the special character &. Then it
substitutes the string for GNU &, meaning GNU Awk. The
1 character at the end tells gensub() to replace the first
occurrence.

$ printf "Awk\nAwk is not Awkward" \
| awk -e ' { print gensub(/(Awk)/, "GNU &",1) }'
GNU Awk
GNU Awk is not Awkward

There’s a time and a place
Awk is a powerful tool, and regex are complex. You might
think awk is so very powerful that it could easily replace
grep and sed and tr and sort [2] and many more, and
in a sense, you’d be right. However, awk is just one tool
in a toolbox that’s overflowing with great options. You
have a choice about what you use and when you use it,
so don’t feel that you have to use one tool for every job
great and small.

With that said, awk really is a powerful tool with lots of
great functions. The more you use it, the better you get to
know it. Remember its capabilities, and fall back on it occa-
sionally so can you get comfortable with it.

Links
[1] https://opensource.com/article/19/7/what-posix-richard-

stallman-explains
[2] https://opensource.com/article/19/10/get-sorted-sort

plum
kiwi
potato
pinenut

The reason both apple and pineapple were replaced with
nut is that both are the first match of their records. If the
records were different, then the results could differ:

$ printf "apple apple\npineapple apple\n" | \
awk -e 'sub(/apple/, "nut")'
nut apple
pinenut apple

The gsub command substitutes all matching items:

$ printf "apple apple\npineapple apple\n" | \
awk -e 'gsub(/apple/, "nut")'
nut nut
pinenut nut

Gensub
An even more complex version of these functions, called
gensub(), is also available.

The gensub function allows you to use the & character to
recall the matched text. For example, if you have a file with
the word Awk and you want to change it to GNU Awk, you
could use this rule:

{ print gensub(/(Awk)/, "GNU &", 1) }

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/get-sorted-sort
https://opensource.com/article/19/7/what-posix-richard-stallman-explains
https://opensource.com/article/19/7/what-posix-richard-stallman-explains
https://opensource.com/article/19/10/get-sorted-sort

18 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

THERE ARE MANY WAYS to control the
flow of an awk script,

including loops [1], switch statements and the break, con-
tinue, and next commands.

Sample data
Create a sample data set called colours.txt and copy this
content into it:

name color amount
apple red 4
banana yellow 6
strawberry red 3
raspberry red 99
grape purple 10
apple green 8
plum purple 2
kiwi brown 4
potato brown 9
pineapple yellow 5
Switch statements

The switch statement is a feature specific to GNU awk, so
you can only use it with gawk. If your system or your target
system doesn’t have gawk, then you should not use a switch
statement.

The switch statement in gawk is similar to the one in C
and many other languages. The syntax is:

switch (expression) {
 case VALUE:
 <do something here>
 [...]
 default:
 <do something here>
}

The expression part can be any awk expression that re-
turns a numeric or string result. The VALUE part (after the
word case) is a numeric or string constant or a regular
expression.

When a switch statement runs, the expression is evalu-
ated, and the result is matched against each case value. If
there’s a match, then the code contained within a case defi-
nition is executed. If there’s no match in any case definition,
then the default statement is executed.

The keyword break is at the end of the code in each case
definition to break the loop. Without break, awk would con-
tinue to search for matching case values.

Here’s an example switch statement:

#!/usr/bin/awk -f
#
Example of the use of 'switch' in GNU Awk.

NR > 1 {
 printf "The %s is classified as: ",$1

 switch ($1) {
 case "apple":
 print "a fruit, pome"
 break
 case "banana":
 case "grape":
 case "kiwi":
 print "a fruit, berry"
 break
 case "raspberry":
 print "a computer, pi"
 break
 case "plum":
 print "a fruit, drupe"
 break

4 ways to control the
flow of your awk script
Learn to use switch statements and the break, continue, and next commands to control awk scripts.

4 WAYS TO CONTROL THE FLOW OF YOUR AWK SCRIPT .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/11/loops-awk

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 19

 # Make an infinite FOR loop
 for (divisor = 2; ; divisor++) {

 # If num is divisible by divisor, then break
 if (num % divisor == 0) {
 printf " Smallest divisor of %d is %d\n",

num, divisor
 break
 }

 # If divisor has gotten too large, the number
 # has no divisor, so is a prime
 if (divisor * divisor > num) {
 printf "%d is prime\n", num
 break
 }
 }
}

Try running the script to see its results:

 $ echo 67 | ./divisor.awk
 67 is prime
 $ echo 69 | ./divisor.awk
 Smallest divisor of 69 is 3

As you can see, even though the script starts out with an
explicit infinite loop with no end condition, the break function
ensures that the script eventually terminates.

Continue
The continue function is similar to break. It can be used in
a for, while, or do-while loop (it’s not relevant to a switch
statements, though). Invoking continue skips the rest of the
enclosing loop and begins the next cycle.

Here’s another good example from the GNU awk manual
to demonstrate a possible use of continue:

#!/usr/bin/awk -f

Loop, printing numbers 0-20, except 5

BEGIN {
 for (x = 0; x <= 20; x++) {
 if (x == 5)
 continue
 printf "%d ", x
 }
 print ""
}

This script analyzes the value of x before printing any-
thing. If the value is exactly 5, then continue is invoked,
causing the printf line to be skipped, but leaves the loop

 case "pineapple":
 print "a fruit, fused berries (syncarp)"
 break
 case "potato":
 print "a vegetable, tuber"
 break
 default:
 print "[unclassified]"
 }
}

This script notably ignores the first line of the file, which in
the case of the sample data is just a header. It does this
by operating only on records with an index number greater
than 1. On all other records, this script compares the con-
tents of the first field ($1, as you know from previous arti-
cles) to the value of each case definition. If there’s a match,
the print function is used to print the botanical classification
of the entry. If there are no matches, then the default in-
stance prints "[unclassified]".

The banana, grape, and kiwi are all botanically classified
as a berry, so there are three case definitions associated
with one print result.

Run the script on the colours.txt sample file, and you
should get this:

The apple is classified as: a fruit, pome
The banana is classified as: a fruit, berry
The strawberry is classified as: [unclassified]
The raspberry is classified as: a computer, pi
The grape is classified as: a fruit, berry
The apple is classified as: a fruit, pome
The plum is classified as: a fruit, drupe
The kiwi is classified as: a fruit, berry
The potato is classified as: a vegetable, tuber
The pineapple is classified as: a fruit, fused berries

(syncarp)

Break
The break statement is mainly used for the early termination
of a for, while, or do-while loop or a switch statement. In a
loop, break is often used where it’s not possible to determine
the number of iterations of the loop beforehand. Invoking
break terminates the enclosing loop (which is relevant when
there are nested loops or loops within loops).

This example, straight out of the GNU awk manual [2], shows
a method of finding the smallest divisor. Read the additional
comments for a clear understanding of how the code works:

#!/usr/bin/awk -f

{
 num = $1

. 4 WAYS TO CONTROL THE FLOW OF YOUR AWK SCRIPT

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.gnu.org/software/gawk/manual/

20 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

4 WAYS TO CONTROL THE FLOW OF YOUR AWK SCRIPT .

This sample uses next in the first rule to avoid the first line of
the file, which is a header row. The second rule skips lines
when the color name is less than six characters long, but
it also saves that line in an array called skip, using the line
number as the key (also known as the index).

The third rule prints anything it sees, but it is not invoked if
either rule 1 or rule 2 causes it to be skipped.

Finally, at the end of all the processing, the END rule prints
the contents of the array.

Run the sample script on the colours.txt file from above
(and previous articles):

$./next.awk colours.txt
banana yellow 6
grape purple 10
plum purple 2
pineapple yellow 5

Skipped:
2: apple red 4
4: strawberry red 3
6: apple green 8
8: kiwi brown 4
9: potato brown 9

Control freak
In summary, switch, continue, next, and break are import-
ant preemptive exceptions to awk rules that provide greater
control of your script. You don’t have to use them directly;
often, you can gain the same logic through other means,
but they’re great convenience functions that make the cod-
er’s life a lot easier. The next article in this series covers the
printf statement.

Links
[1] https://opensource.com/article/19/11/loops-awk
[2] https://www.gnu.org/software/gawk/manual/

unbroken. Try the same code but with break instead to
see the difference.

Next
This statement is not related to loops like break and continue
are. Instead, next applies to the main record processing cycle
of awk: the functions you place between the BEGIN and END
functions. The next statement causes awk to stop processing
the current input record and to move to the next one.

As you know from the earlier articles in this series, awk
reads records from its input stream and applies rules to
them. The next statement stops the execution of rules for
the current record and moves to the next one.

Here’s an example of next being used to “hold” information
upon a specific condition:

#!/usr/bin/awk -f

Ignore the header
NR == 1 { next }

If field 2 (colour) is less than 6
characters, then save it with its
line number and skip it

length($2) < 6 {
 skip[NR] = $0
 next
}

It's not the header and
the colour name is > 6 characters,
so print the line
{
 print
}

At the end, show what was skipped
END {
 printf "\nSkipped:\n"
 for (n in skip)
 print n": "skip[n]
}

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/11/loops-awk
https://www.gnu.org/software/gawk/manual/

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 21

. ADVANCE YOUR AWK SKILLS WITH TWO EASY TUTORIALS

AWK IS ONE OF THE OLDEST TOOLS in the Unix and
Linux user’s toolbox. Created

in the 1970s by Alfred Aho, Peter Weinberger, and Bri-
an Kernighan (the A, W, and K of the tool’s name), awk
was created for complex processing of text streams. It is
a companion tool to sed, the stream editor, which is de-
signed for line-by-line processing of text files. Awk allows
more complex structured programs and is a complete pro-
gramming language.

This article will explain how to use awk for more struc-
tured and complex tasks, including a simple mail merge
application.

Awk program structure
An awk script is made up of functional blocks surrounded
by {} (curly brackets). There are two special function blocks,
BEGIN and END, that execute before processing the first
line of the input stream and after the last line is processed. In
between, blocks have the format:

pattern { action statements }

Each block executes when the line in the input buffer match-
es the pattern. If no pattern is included, the function block
executes on every line of the input stream.

Also, the following syntax can be used to define functions
in awk that can be called from any block:

function name(parameter list) { statements }

This combination of pattern-matching blocks and functions
allows the developer to structure awk programs for reuse
and readability.

How awk processes text streams
Awk reads text from its input file or stream one line at a time
and uses a field separator to parse it into a number of fields.

In awk terminology, the current buffer is a record. There are
a number of special variables that affect how awk reads and
processes a file:

• FS (field separator): By default, this is any whitespace
(spaces or tabs)

• RS (record separator): By default, a newline (\n)
• NF (number of fields): When awk parses a line, this variable

is set to the number of fields that have been parsed
• $0: The current record
• $1, $2, $3, etc.: The first, second, third, etc. field from the

current record
• NR (number of records): The number of records that have

been parsed so far by the awk script

There are many other variables that affect awk’s behavior,
but this is enough to start with.

Awk one-liners
For a tool so powerful, it’s interesting that most of awk’s us-
age is basic one-liners. Perhaps the most common awk pro-
gram prints selected fields from an input line from a CSV file,
a log file, etc. For example, the following one-liner prints a list
of usernames from /etc/passwd:

awk -F":" '{print $1 }' /etc/passwd

As mentioned above, $1 is the first field in the current record.
The -F option sets the FS variable to the character :.

The field separator can also be set in a BEGIN function
block:

awk 'BEGIN { FS=":" } {print $1 }' /etc/passwd

In the following example, every user whose shell is not /sbin/
nologin can be printed by preceding the block with a pattern
match:

Advance your awk skills
with two easy tutorials
Go beyond one-line awk scripts with mail merge and word counting.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

22 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

ADVANCE YOUR AWK SKILLS WITH TWO EASY TUTORIALS .

BEGIN {
 FS=",";
 template="email_template.txt";
 output="acceptance";
 getline;
 NR=0;
}

The main function is very straightforward: for each line pro-
cessed, a variable is set for the various fields—firstname,
lastname, email, and title. The template file is read line by
line, and the function sub is used to substitute any occur-
rence of the special character sequences with the value of
the relevant variable. Then the line, with any substitutions
made, is output to the output file.

Since you are dealing with the template file and a dif-
ferent output file for each line, you need to clean up and
close the file handles for these files before processing the
next record.

{
 # Read relevant fields from input file
 firstname=$1;
 lastname=$2;
 email=$3;
 title=$4;

 # Set output filename
 outfile=(output NR ".txt");

 # Read a line from template, replace special
 # fields, and print result to output file
 while ((getline ln < template) > 0)
 {
 sub(/{firstname}/,firstname,ln);
 sub(/{lastname}/,lastname,ln);
 sub(/{email}/,email,ln);
 sub(/{title}/,title,ln);
 print(ln) > outfile;
 }

 # Close template and output file in advance of
next record
 close(outfile);
 close(template);
}

You’re done! Run the script on the command line with:

awk -f mail_merge.awk proposals.csv

or

awk ' BEGIN { FS=":" } ! /\/sbin\/nologin/ {print $1 }'
/etc/passwd

Advanced awk: Mail merge
Now that you have some of the basics, try delving deep-
er into awk with a more structured example: creating a mail
merge.

A mail merge uses two files, one (called in this example
email_template.txt) containing a template for an email you
want to send:

From: Program committee <pc@event.org>
To: {firstname} {lastname} <{email}>
Subject: Your presentation proposal

Dear {firstname},

Thank you for your presentation proposal:
 {title}

We are pleased to inform you that your proposal has
been successful! We
will contact you shortly with further information about
the event
schedule.

Thank you,
The Program Committee

And the other is a CSV file (called proposals.csv) with the
people you want to send the email to:

firstname,lastname,email,title
Ha rry,Potter,hpotter@hogwarts.edu,"Defeating your
nemesis in 3 easy steps"

Ja ck,Reacher,reacher@covert.mil,"Hand-to-hand combat
for beginners"

Mi ckey,Mouse,mmouse@disney.com,"Surviving public
speaking with a squeaky voice"

Santa,Claus,sclaus@northpole.org,"Efficient list-making"

You want to read the CSV file, replace the relevant fields in
the first file (skipping the first line), then write the result to
a file called acceptanceN.txt, incrementing N for each line
you parse.

Write the awk program in a file called mail_merge.awk.
Statements are separated by ; in awk scripts. The first task
is to set the field separator variable and a couple of other
variables the script needs. You also need to read and dis-
card the first line in the CSV, or a file will be created starting
with Dear firstname. To do this, use the special function
getline and reset the record counter to 0 after reading it.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 23

. ADVANCE YOUR AWK SKILLS WITH TWO EASY TUTORIALS

awk -f mail_merge.awk < proposals.csv

and you will find text files generated in the current directory.

Advanced awk: Word frequency count
One of the most powerful features in awk is the associative
array. In most programming languages, array entries are typ-
ically indexed by a number, but in awk, arrays are referenced
by a key string. You could store an entry from the file propos-
als.txt from the previous section. For example, in a single
associative array, like this:

 proposer["firstname"]=$1;
 proposer["lastname"]=$2;
 proposer["email"]=$3;
 proposer["title"]=$4;

This makes text processing very easy. A simple program that
uses this concept is the idea of a word frequency counter.
You can parse a file, break out words (ignoring punctuation)
in each line, increment the counter for each word in the line,
then output the top 20 words that occur in the text.

First, in a file called wordcount.awk, set the field separator to
a regular expression that includes whitespace and punctuation:

BEGIN {
 # ignore 1 or more consecutive occurrences of
the characters
 # in the character group below
 FS="[.,:;()<>{}@!\"'\t]+";
}

Next, the main loop function will iterate over each field, ignor-
ing any empty fields (which happens if there is punctuation
at the end of a line), and increment the word count for the
words in the line.

{
 for (i = 1; i <= NF; i++) {
 if ($i != "") {
 words[$i]++;
 }
 }
}

Finally, after the text is processed, use the END function to
print the contents of the array, then use awk’s capability of
piping output into a shell command to do a numerical sort
and print the 20 most frequently occurring words:

END {
 sort_head = "sort -k2 -nr | head -n 20";

 for (word in words) {
 pr intf "%s\t%d\n", word, words[word] |

sort_head;
 }
 close (sort_head);
}

Running this script on an earlier draft of this article produced
this output:

[dneary@dhcp-49-32.bos.redhat.com]$ awk -f wordcount.
awk < awk_article.txt
the 79
awk 41
a 39
and 33
of 32
in 27
to 26
is 25
line 23
for 23
will 22
file 21
we 16
We 15
with 12
which 12
by 12
this 11
output 11
function 11

What’s next?
If you want to learn more about awk programming, I strongly
recommend the book Sed and awk [1] by Dale Dougherty
and Arnold Robbins.

One of the keys to progressing in awk programming is
mastering “extended regular expressions.” Awk offers sever-
al powerful additions to the sed regular expression [2] syntax
you may already be familiar with.

Another great resource for learning awk is the GNU awk
user guide [3]. It has a full reference for awk’s built-in func-
tion library, as well as lots of examples of simple and com-
plex awk scripts.

Links
[1] https://www.amazon.com/sed-awk-Dale-Dougherty/

dp/1565922255/book
[2] https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-

Extended_Regular_Expressions
[3] https://www.gnu.org/software/gawk/manual/gawk.html

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.amazon.com/sed-awk-Dale-Dougherty/dp/1565922255/book
https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.amazon.com/sed-awk-Dale-Dougherty/dp/1565922255/book
https://www.amazon.com/sed-awk-Dale-Dougherty/dp/1565922255/book
https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions
https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions
https://www.gnu.org/software/gawk/manual/gawk.html

24 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

SUPPOSE YOU HAVE a text file and you need to re-
move all of its duplicate lines.

TL;DR
To remove the duplicate lines while preserving their order in
the file, use:

awk '!visited[$0]++' your_file > deduplicated_file

How it works
The script keeps an associative array with indices equal to the
unique lines of the file and values equal to their occurrences.
For each line of the file, if the line occurrences are zero, then
it increases them by one and prints the line, otherwise, it just
increases the occurrences without printing the line.

I was not familiar with awk, and I wanted to understand
how this can be accomplished with such a short script (awk-
ward). I did my research, and here is what is going on:

• The awk “script” !visited[$0]++ is executed for each line of
the input file.

• visited[] is a variable of type associative array [1] (a.k.a.
Map [2]). We don’t have to initialize it because awk will do
it the first time we access it.

• The $0 variable holds the contents of the line currently be-
ing processed.

• visited[$0] accesses the value stored in the map with a
key equal to $0 (the line being processed), a.k.a. the occur-
rences (which we set below).

• The ! negates the occurrences’ value:
 • In awk, any nonzero numeric value or any nonempty

string value is true [3].
 • By default, variables are initialized to the empty string [4],

which is zero if converted to a number.
 • That being said:
 • If visited[$0] returns a number greater than zero, this

negation is resolved to false.
 • If visited[$0] returns a number equal to zero or an emp-

ty string, this negation is resolved to true.
• The ++ operation increases the variable’s value (visit-

ed[$0]) by one.

 • If the value is empty, awk converts it to 0 (number) auto-
matically and then it gets increased.

 • Note: The operation is executed after we access the vari-
able’s value.

Summing up, the whole expression evaluates to:

• true if the occurrences are zero/empty string
• false if the occurrences are greater than zero

awk statements consist of a pattern-expression and an as-
sociated action [5].

<pattern/expression> { <action> }

If the pattern succeeds, then the associated action is exe-
cuted. If we don’t provide an action, awk, by default, prints
the input.

An omitted action is equivalent to { print $0 }.

Our script consists of one awk statement with an expression,
omitting the action. So this:

awk '!visited[$0]++' your_file > deduplicated_file

is equivalent to this:

aw k '!visited[$0]++ { print $0 }' your_file >
deduplicated_file

For every line of the file, if the expression succeeds, the line
is printed to the output. Otherwise, the action is not execut-
ed, and nothing is printed.

Why not use the uniq command?
The uniq command removes only the adjacent duplicate
lines. Here’s a demonstration:

How to remove duplicate lines
from files with awk
Learn how to use awk ‘!visited[$0]++’ without sorting or changing their order.

HOW TO REMOVE DUPLICATE LINES FROM FILES WITH AWK .

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://kirste.userpage.fu-berlin.de/chemnet/use/info/gawk/gawk_12.html
https://en.wikipedia.org/wiki/Associative_array
https://www.gnu.org/software/gawk/manual/html_node/Truth-Values.html
https://ftp.gnu.org/old-gnu/Manuals/gawk-3.0.3/html_chapter/gawk_8.html
http://kirste.userpage.fu-berlin.de/chemnet/use/info/gawk/gawk_9.html

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 25

. HOW TO REMOVE DUPLICATE LINES FROM FILES WITH AWK

$ cat test.txt
A
A
A
B
B
B
A
A
C
C
C
B
B
A
$ uniq < test.txt
A
B
A
C
B
A

Other approaches
Using the sort command
We can also use the following sort [6] command to remove
the duplicate lines, but the line order is not preserved.

sort -u your_file > sorted_deduplicated_file

Using cat, sort, and cut
The previous approach would produce a de-duplicated file
whose lines would be sorted based on the contents. Piping a
bunch of commands [7] can overcome this issue:

cat -n your_file | sort -uk2 | sort -nk1 | cut -f2-

How it works
Suppose we have the following file:

abc
ghi
abc
def
xyz
def
ghi
klm

cat -n test.txt prepends the order number in each line.

1 abc
2 ghi
3 abc
4 def
5 xyz

6 def
7 ghi
8 klm

sort -uk2 sorts the lines based on the second column (k2
option) and keeps only the first occurrence of the lines with
the same second column value (u option).

1 abc
4 def
2 ghi
8 klm
5 xyz

sort -nk1 sorts the lines based on their first column (k1 op-
tion) treating the column as a number (-n option).

1 abc
2 ghi
4 def
5 xyz
8 klm

Finally, cut -f2- prints each line starting from the second
column until its end (-f2- option: Note the - suffix, which in-
structs it to include the rest of the line).

abc
ghi
def
xyz
klm

References
• The GNU awk user’s guide
• Arrays in awk
• Awk—Truth values
• Awk expressions
• How can I delete duplicate lines in a file in Unix?
• Remove duplicate lines without sorting [duplicate]
• How does awk ‘!a[$0]++’ work?

Links
[1] http://kirste.userpage.fu-berlin.de/chemnet/use/info/gawk/

gawk_12.html
[2] https://en.wikipedia.org/wiki/Associative_array
[3] https://www.gnu.org/software/gawk/manual/html_node/

Truth-Values.html
[4] https://ftp.gnu.org/old-gnu/Manuals/gawk-3.0.3/html_

chapter/gawk_8.html
[5] http://kirste.userpage.fu-berlin.de/chemnet/use/info/gawk/

gawk_9.html
[6] http://man7.org/linux/man-pages/man1/sort.1.html
[7] https://stackoverflow.com/a/20639730/2292448

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://man7.org/linux/man-pages/man1/sort.1.html
https://stackoverflow.com/a/20639730/2292448
https://www.gnu.org/software/gawk/manual/html_node/
http://kirste.userpage.fu-berlin.de/chemnet/use/info/gawk/gawk_12.html
https://www.gnu.org/software/gawk/manual/html_node/Truth-Values.html
https://ftp.gnu.org/old-gnu/Manuals/gawk-3.0.3/html_chapter/gawk_8.html
https://stackoverflow.com/questions/1444406/how-can-i-delete-duplicate-lines-in-a-file-in-unix
https://stackoverflow.com/questions/11532157/remove-duplicate-lines-without-sorting
https://unix.stackexchange.com/questions/159695/how-does-awk-a0-work/159734#159734
http://kirste.userpage.fu-berlin.de/chemnet/use/info/gawk/gawk_12.html
http://kirste.userpage.fu-berlin.de/chemnet/use/info/gawk/gawk_12.html
https://en.wikipedia.org/wiki/Associative_array
https://www.gnu.org/software/gawk/manual/html_node/Truth-Values.html
https://www.gnu.org/software/gawk/manual/html_node/Truth-Values.html
https://ftp.gnu.org/old-gnu/Manuals/gawk-3.0.3/html_chapter/gawk_8.html
https://ftp.gnu.org/old-gnu/Manuals/gawk-3.0.3/html_chapter/gawk_8.html
http://kirste.userpage.fu-berlin.de/chemnet/use/info/gawk/gawk_9.html
http://kirste.userpage.fu-berlin.de/chemnet/use/info/gawk/gawk_9.html
http://man7.org/linux/man-pages/man1/sort.1.html
https://stackoverflow.com/a/20639730/2292448

26 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

AWK ONE-LINERS AND SCRIPTS TO HELP YOU SORT TEXT FILES .

AWK IS THE UBIQUITOUS UNIX COMMAND for scanning
and processing text containing pre-

dictable patterns. However, because it features functions, it’s
also justifiably called a programming language..

Confusingly, there is more than one awk. (Or, if you be-
lieve there can be only one, then there are several clones.)
There’s awk, the original program written by Aho, Weinberg-
er, and Kernighan, and then there’s nawk, mawk, and the
GNU version, gawk. The GNU version of awk is a highly por-
table, free software version of the utility with several unique
features, so this article is about GNU awk.

While its official name is gawk, on GNU+Linux systems
it’s aliased to awk and serves as the default version of that
command. On other systems that don’t ship with GNU awk,
you must install it and refer to it as gawk, rather than awk.
This article uses the terms awk and gawk interchangeably.

Being both a command and a programming language
makes awk a powerful tool for tasks that might otherwise
be left to sort, cut, uniq, and other common utilities. Luck-
ily, there’s lots of room in open source for redundancy, so if
you’re faced with the question of whether or not to use awk,
the answer is probably a solid “maybe.”

The beauty of awk’s flexibility is that if you’ve already com-
mitted to using awk for a task, then you can probably stay in
awk no matter what comes up along the way. This includes
the eternal need to sort data in a way other than the order it
was delivered to you.

Sample set
Before exploring awk’s sorting methods, generate a sample
dataset to use. Keep it simple so that you don’t get distracted
by edge cases and unintended complexity. This is the sam-
ple set this article uses:

Aptenodytes;forsteri;Miller,JF;1778;Emperor
Pygoscelis;papua;Wagler;1832;Gentoo

Eudyptula;minor;Bonaparte;1867;Little Blue
Spheniscus;demersus;Brisson;1760;African
Megadyptes;antipodes;Milne-Edwards;1880;Yellow-eyed
Eudyptes;chrysocome;Viellot;1816;Sothern Rockhopper
Torvaldis;linux;Ewing,L;1996;Tux

It’s a small dataset, but it offers a good variety of data types:

• A genus and species name, which are associated with one
another but considered separate

• A surname, sometimes with first initials after a comma
• An integer representing a date
• An arbitrary term
• All fields separated by semi-colons

Depending on your educational background, you may con-
sider this a 2D array or a table or just a line-delimited collec-
tion of data. How you think of it is up to you, because awk
doesn’t expect anything more than text. It’s up to you to tell
awk how you want to parse it.

The sort cheat
If you just want to sort a text dataset by a specific, definable
field (think of a “cell” in a spreadsheet), then you can use the
sort command [1].

Fields and records
Regardless of the format of your input, you must find patterns in
it so that you can focus on the parts of the data that are import-
ant to you. In this example, the data is delimited by two factors:
lines and fields. Each new line represents a new record, as you
would likely see in a spreadsheet or database dump. Within
each line, there are distinct fields (think of them as cells in a
spreadsheet) that are separated by semicolons (;).

Awk processes one record at a time, so while you’re structur-
ing the instructions you will give to awk, you can focus on just

Awk one-liners and scripts
to help you sort text files
Awk is a powerful tool for doing tasks that might otherwise be left to other
common utilities, including sort.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/19/10/get-sorted-sort

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 27

. AWK ONE-LINERS AND SCRIPTS TO HELP YOU SORT TEXT FILES

one line. Establish what you want to do with one line, then test
it (either mentally or with awk) on the next line and a few more.
You’ll end up with a good hypothesis on what your awk script
must do in order to provide you with the data structure you want.

In this case, it’s easy to see that each field is separated by
a semicolon. For simplicity’s sake, assume you want to sort
the list by the very first field of each line.

Before you can sort, you must be able to focus awk on just
the first field of each line, so that’s the first step. The syntax
of an awk command in a terminal is awk, followed by rele-
vant options, followed by your awk command, and ending
with the file of data you want to process.

$ awk --field-separator=";" '{print $1;}' penguins.list
Aptenodytes
Pygoscelis
Eudyptula
Spheniscus
Megadyptes
Eudyptes
Torvaldis

Because the field separator is a character that has special
meaning to the Bash shell, you must enclose the semicolon
in quotes or precede it with a backslash. This command is
useful only to prove that you can focus on a specific field.
You can try the same command using the number of another
field to view the contents of another “column” of your data:

$ awk --field-separator=";" '{print $3;}' penguins.list
Miller,JF
Wagler
Bonaparte
Brisson
Milne-Edwards
Viellot
Ewing,L

Nothing has been sorted yet, but this is good groundwork.

Scripting
Awk is more than just a command; it’s a programming lan-
guage with indices and arrays and functions. That’s signifi-
cant because it means you can grab a list of fields you want
to sort by, store the list in memory, process it, and then print
the resulting data. For a complex series of actions such as
this, it’s easier to work in a text file, so create a new file called
sorter.awk and enter this text:

#!/usr/bin/awk -f

BEGIN {
 FS=";";
}

This establishes the file as an awk script that executes the
lines contained in the file.

The BEGIN statement is a special setup function provid-
ed by awk for tasks that need to occur only once. Defining
the built-in variable FS, which stands for field separator
and is the same value you set in your awk command with
--field-separator, only needs to happen once, so it’s includ-
ed in the BEGIN statement.

Arrays in awk
You already know how to gather the values of a specific field
by using the $ notation along with the field number, but in
this case, you need to store it in an array rather than print
it to the terminal. This is done with an awk array. The im-
portant thing about an awk array is that it contains keys
and values. Imagine an array about this article; it would
look something like this: author:"seth",title:"How to sort
with awk",length:1200. Elements like author and title and
length are keys, with the following contents being values.

The advantage to this in the context of sorting is that you
can assign any field as the key and any record as the value,
and then use the built-in awk function asorti() (sort by index)
to sort by the key. For now, assume arbitrarily that you only
want to sort by the second field.

Awk statements not preceded by the special keywords
BEGIN or END are loops that happen at each record. This
is the part of the script that scans the data for patterns and
processes it accordingly. Each time awk turns its attention
to a record, statements in {} (unless preceded by BEGIN or
END) are executed.

To add a key and value to an array, create a variable (in
this example script, I call it ARRAY, which isn’t terribly origi-
nal, but very clear) containing an array, and then assign it a
key in brackets and a value with an equals sign (=).

{ # dump each field into an array
 ARRAY[$2] = $R;
}

In this statement, the contents of the second field ($2) are
used as the key term, and the current record ($R) is used
as the value.

The asorti() function
In addition to arrays, awk has several basic functions that
you can use as quick and easy solutions for common tasks.
One of the functions introduced in GNU awk, asorti(), pro-
vides the ability to sort an array by key (or index) or value.

You can only sort the array once it has been populated,
meaning that this action must not occur with every new
record but only the final stage of your script. For this pur-
pose, awk provides the special END keyword. The inverse
of BEGIN, an END statement happens only once and only
after all records have been scanned.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

28 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

AWK ONE-LINERS AND SCRIPTS TO HELP YOU SORT TEXT FILES .

{ # dump each field into an array
 ARRAY[$var] = $R;
}

Try running the script so that it sorts by the third field by using
the -v var option when you execute it:

$./sorter.awk -v var=3 penguins.list
Bonaparte Eudyptula;minor;Bonaparte;1867;Little Blue
Brisson Spheniscus;demersus;Brisson;1760;African
Ewing,L Torvaldis;linux;Ewing,L;1996;Tux
Miller,JF Aptenodytes;forsteri;Miller,JF;1778;Emperor
Mi lne-Edwards Megadyptes;antipodes;Milne-Edwards;1880;

Yellow-eyed
Vi ellot Eudyptes;chrysocome;Viellot;1816;
Sothern Rockhopper

Wagler Pygoscelis;papua;Wagler;1832;Gentoo

Fixes
This article has demonstrated how to sort data in pure GNU
awk. The script can be improved so, if it’s useful to you,
spend some time researching awk functions [2] on gawk’s
man page and customizing the script for better output.

Here is the complete script so far:

#!/usr/bin/awk -f
GPLv3 appears here
usage: ./sorter.awk -v var=NUM FILE

BEGIN { FS=";"; }

{ # dump each field into an array
 ARRAY[$var] = $R;
}

END {
 asorti(ARRAY,SARRAY);
 # get length
 j = length(SARRAY);

 for (i = 1; i <= j; i++) {
 printf("%s %s\n", SARRAY[i],ARRAY[SARRAY[i]])
 }
}

Links
[1] https://opensource.com/article/19/10/get-sorted-sort
[2] https://www.gnu.org/software/gawk/manual/html_node/

Built_002din.html#Built_002din

Add this to your script:

END {
 asorti(ARRAY,SARRAY);
 # get length
 j = length(SARRAY);

 for (i = 1; i <= j; i++) {
 printf("%s %s\n", SARRAY[i],ARRAY[SARRAY[i]])
 }
}

The asorti() function takes the contents of ARRAY, sorts it
by index, and places the results in a new array called SAR-
RAY (an arbitrary name I invented for this article, meaning
Sorted ARRAY).

Next, the variable j (another arbitrary name) is assigned
the results of the length() function, which counts the number
of items in SARRAY.

Finally, use a for loop to iterate through each item in
SARRAY using the printf() function to print each key, fol-
lowed by the corresponding value of that key in ARRAY.

Running the script
To run your awk script, make it executable:

$ chmod +x sorter.awk

And then run it against the penguin.list sample data:

$./sorter.awk penguins.list
an tipodes Megadyptes;antipodes;Milne-Edwards;1880;
Yellow-eyed

ch rysocome Eudyptes;chrysocome;Viellot;1816;
Sothern Rockhopper

demersus Spheniscus;demersus;Brisson;1760;African
forsteri Aptenodytes;forsteri;Miller,JF;1778;Emperor
linux Torvaldis;linux;Ewing,L;1996;Tux
minor Eudyptula;minor;Bonaparte;1867;Little Blue
papua Pygoscelis;papua;Wagler;1832;Gentoo

As you can see, the data is sorted by the second field.
This is a little restrictive. It would be better to have the

flexibility to choose at runtime which field you want to use as
your sorting key so you could use this script on any dataset
and get meaningful results.

Adding command options
You can add a command variable to an awk script by using
the literal value var in your script. Change your script so that
your iterative clause uses var when creating your array:

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html#Built_002din
https://opensource.com/article/19/10/get-sorted-sort
https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html#Built_002din
https://www.gnu.org/software/gawk/manual/html_node/Built_002din.html#Built_002din

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 29

. A GAWK SCRIPT TO CONVERT SMART QUOTES

I MANAGE a personal website and edit the web
pages by hand. Since I don’t have

many pages on my site, this works well for me, letting me
“scratch the itch” of getting into the site’s code.

When I updated my website’s design recently, I decided to
turn all the plain quotes into “smart quotes,” or quotes that
look like those used in print material: “” instead of "".

Editing all of the quotes by hand would take too long,
so I decided to automate the process of converting the
quotes in all of my HTML files. But doing so via a script or
program requires some intelligence. The script needs to
know when to convert a plain quote to a smart quote, and
which quote to use.

You can use different methods to convert quotes. Greg
Pittman wrote a Python script [1] for fixing smart quotes in
text. I wrote mine in GNU awk (gawk) [2].

To start, I wrote a simple gawk function to evaluate a sin-
gle character. If that character is a quote, the function de-
termines if it should output a plain quote or a smart quote.
The function looks at the previous character; if the previ-
ous character is a space, the function outputs a left smart
quote. Otherwise, the function outputs a right smart quote.
The script does the same for single quotes.

function smartquote (char, prevchar) {
 # print smart quotes depending on the previous
 # character otherwise just print the character as-is

 if (prevchar ~ /\s/) {
 # prev char is a space
 if (char == "'") {
 printf("‘");
 }
 else if (char == "\"") {
 printf("“");
 }
 else {
 printf("%c", char);
 }

 }
 else {
 # prev char is not a space
 if (char == "'") {
 printf("’");
 }
 else if (char == "\"") {
 printf("”");
 }
 else {
 printf("%c", char);
 }
 }
}

With that function, the body of the gawk script processes the
HTML input file character by character. The script prints all
text verbatim when inside an HTML tag (for example, <html
lang="en">. Outside any HTML tags, the script uses the
smartquote() function to print text. The smartquote() func-
tion does the work of evaluating when to print plain quotes
or smart quotes.

function smartquote (char, prevchar) {
 ...
}

BEGIN {htmltag = 0}

{
 # for each line, scan one letter at a time:

 linelen = length($0);

 prev = "\n";

 for (i = 1; i <= linelen; i++) {
 char = substr($0, i, 1);

A gawk script
to convert smart quotes

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/3/python-scribus-smart-quotes
https://opensource.com/downloads/cheat-sheet-awk-features

30 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

A GAWK SCRIPT TO CONVERT SMART QUOTES .

<body>
 <h1>
 </h1>
 <p>"Hi there!"</p>
 <p>It's and its.</p>
</body>
</html>
Sample output:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Test page</title>
 <link rel="stylesheet" type="text/css" href="/test.css" />
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width" />
</head>
<body>
 <h1>
 </h1>
 <p>“Hi there!”</p>
 <p>It’s and its.</p>
</body>
</html>

Links
[1] https://opensource.com/article/17/3/python-scribus-smart-

quotes
[2] https://opensource.com/downloads/cheat-sheet-awk-

features

 if (char == "<") {
 htmltag = 1;
 }

 if (htmltag == 1) {
 printf("%c", char);
 }
 else {
 smartquote(char, prev);
 prev = char;
 }

 if (char == ">") {
 htmltag = 0;
 }
 }

 # add trailing newline at end of each line
 printf ("\n");
}

Here’s an example:

gawk -f quotes.awk test.html > test2.html
Sample input:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Test page</title>
 <link rel="stylesheet" type="text/css" href="/test.css" />
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width" />
</head>

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/article/17/3/python-scribus-smart-quotes
https://opensource.com/article/17/3/python-scribus-smart-quotes
https://opensource.com/downloads/cheat-sheet-awk-features
https://opensource.com/downloads/cheat-sheet-awk-features

A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM 31

. DRINKING COFFEE WITH AWK

THE FOLLOWING is based on a true story,
although some names

and details have been changed.

A long time ago, in a place far away, there was an
office. The office did not, for various reasons, buy in-
stant coffee. Some workers in that office got together
and decided to institute the “Coffee Corner.”
A member of the Coffee Corner would buy some in-
stant coffee, and the other members would pay them
back. It came to pass that some people drank more
coffee than others, so the level of a “half-member”
was added: a half-member was allowed a limited
number of coffees per week and would pay half of
what a member paid

Managing this was a huge pain. I had just read The Unix
Programming Environment and wanted to practice my AWK
[1] programming. So I volunteered to create a system.

Step 1: I kept a database of members and their debt to the
Coffee Corner. I did it in an AWK-friendly format, where fields
are separated by colons:

member:john:1:22
member:jane:0.5:33
member:pratyush:0.5:17
member:jing:1:27

The first field above identifies what kind of row this is
(member). The second field is the member’s name (i.e.,
their email username without the @). The next field is their
membership level (full=1 or half=0.5). The last field is their
debt to the Coffee Corner. A positive number means they
owe money, a negative number means the Coffee Corner
owes them.

Step 2: I kept a log of inputs to and outputs from the Coffee
Corner:

payment:jane:33
payment:pratyush:17
bought:john:60
payback:john:50

Jane paid $33, Pratyush paid $17, John bought $60 worth of
coffee, and the Coffee Corner paid John $50.

Step 3: I was ready to write some code. The code would
process the members and payments and spit out an updated
members file with the new debts.

#!/usr/bin/env --split-string=awk -F: -f

The shebang (#!) line required some work! I used the env
command to allow passing multiple arguments from the she-
bang: specifically, the -F command-line argument to AWK
tells it what the field separator is.

An AWK program is a sequence of rules. (It can also con-
tain function definitions, but I don’t need any for the Coffee
Corner.)

The first rule reads the members file. When I run the com-
mand, I always give it the members file first, and the pay-
ments file second. It uses AWK associative arrays to record
membership levels in the members array and current debt
in the debt array.

$1 == "member" {
 members[$2]=$3
 debt[$2]=$4
 total_members += $3
}

The second rule reduces the debt when a payment is
recorded.

$1 == "payment" {
 debt[$2] -= $3
}

Drinking coffee with AWK
Keep track of what your office mates owe for the coffee they drink with a simple AWK program.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/AWK

32 A PRACTICAL GUIDE TO LEARNING GNU AWK ... CC BY-SA 4.0 ... OPENSOURCE.COM

DRINKING COFFEE WITH AWK .

The END pattern is special: it happens exactly once, when
AWK has no more lines to process. At this point, it spits out
the new members file with updated debt levels.

END {
 for (x in members) {
 printf "%s:%s:%s\n", x, members[x], debt[x]
 }
}

Along with a script that iterates over the members and
sends a reminder email to people to pay their dues (for
positive debts), this system managed the Coffee Corner for
quite a while.

Links
[1] https://en.wikipedia.org/wiki/AWK

Payback is the opposite: it increases the debt. This ele-
gantly supports the case of accidentally giving someone too
much money.

$1 == "payback" {
 debt[$2] += $3
}

The most complicated part happens when someone buys
("bought") instant coffee for the Coffee Club’s use. It is
treated as a payment and the person’s debt is reduced by
the appropriate amount. Next, it calculates the per-member
fee. It iterates over all members and increases their debt,
according to their level of membership.

$1 == "bought" {
 debt[$2] -= $3
 per_member = $3/total_members
 for (x in members) {
 debt[x] += per_member * members[x]
 }
}

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://en.wikipedia.org/wiki/AWK

REGULAR EXPRESSIONS

Common regular expression patterns include:

^ Matches start of a line
$ Matches end of a line
. Matches any character, including newline
a Matches a single letter a
a+ Matches one or more a's
a* Matches zero or more a's
a? Matches zero or one a's
[abc] Matches any of the characters a, b, or c
[^abc] Negation; matches any character except a, b, or c
\. Use backslash (\) to match a special character (like .)

You can also use character classes, including:

[:alpha:] Any alphabetic character
[:lower:] Any lowercase letter
[:upper:] Any uppercase letter
[:digit:] Any numeric character
[:alnum:] Any alphanumeric character
[:cntrl:] Any control character
[:blank:] Spaces or tabs
[:space:] Spaces, tabs, and other white space (such as

linefeed)

OPERATORS

(…) Grouping
++ -- Increment and decrement
^ Exponents
+ - ! Unary plus, minus, and negation
* / % Multiply, divide, and modulo
+ - Add and subtract
< > <= >= == != Relations
~ !~ Regular expression match or negated match
&& Logical AND
|| Logical OR
= += -= *= /= %= ^= Assignment

 Opensource.com: GNU awk Cheat Sheet PAGE 1 OF 2 BY JIM HALL

Use this handy quick reference guide to the most commonly used features of GNU awk (gawk).
COMMAND-LINE USAGE

Run a gawk script using -f or include a short script right on the
command line.

gawk -f file.awk file1 file2…

or:

gawk 'pattern {action}' file1 file2…

also: set the field separator using -F

gawk -F: …

PATTERNS

All program lines are some combination of a pattern and actions:

pattern {action}

where pattern can be:
• BEGIN (matches start of input)
• END (matches end of input)
• a regular expression (act only on matching lines)
• a comparison (act only when true)
• empty (act on all lines)

ACTIONS

Actions are very similar to C programming.
Actions can span multiple lines.
End statements with a semicolon (;)
For example:

BEGIN { FS = ":"; }

{ print "Hello world"; }

{
 print;
 i = i + 1;
}

FIELDS

Gawk does the work for you and splits input lines so you can
reference them by field. Use -F on the command line or set FS
to set the field separator.
• Reference fields using $
• $1 for the first string, and so on
• Use $0 for the entire line
For example:

gawk '{print "1st word:", $1;}' file.txt

or:

gawk -F: '{print "uid", $3;}' /etc/passwd

Twitter @opensourceway | facebook.com/opensourceway | CC BY-SA 4.0opensource.com

http://twitter.com/opensourceway
http://www.facebook.com/opensourceway
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/
https://opensource.com/

FLOW CONTROL

You can use many common flow control and loop structures,
including if, while, do-while, for, and switch.

if (i < 10) { print; }

while (i < 10) { print; i++; }

do {
 print;
 i++;
} while (i < 10);

for (i = 1; i < 10; i++) { print i; }

switch (n) {
 case 1: print "yes";
 ⋮
 default: print "no";
}

FUNCTIONS
Frequently-used string functions include:

print "hello world"
print "user:" $1
print $1, $2
print i
print

Print a value or string. If you don't give a value, outputs $0 instead.
Use commas (,) to put space between the values.
Use spaces () to combine the output.

printf(fmt, values…)

The standard C printf function.

sprintf(fmt, values…)

Similar to the standard C sprintf function, returns the new string.

index(str, sub)

Return the index of the substring sub in the string str, or zero
if not found.

length([str])

Return the length of the string $0.
If you include the string str, give that length instead.

FUNCTIONS (CONTINUED)

substr(str, pos [, n])

Return the next n characters of the string str, starting at position pos.
If n is omitted, return the rest of the string str.

tolower(str)

Return the string str, converted to all lowercase.

toupper(str)

Return the string str, converted to all uppercase.
Other common string functions include:

match(str, regex)

Return the position of the first occurrence of the regular
expression regex in the string str.

sub(sub, repl [, str])

For the first matching substring sub in the string $0, replace it
with repl.
If you include the optional string str, operate on that string instead.

gsub(sub, repl [, str])

Same as sub(), but replaces all matching substrings.

split(str, arr [, del])

Splits up the string str into the array arr, according to spaces
and tabs.
If you include the optional string del, use that as the field
delimiter characters.

strtonum(str)

Return the numeric value of the string str. Works with decimal,
octal, and hexadecimal values.

USER-DEFINED FUNCTIONS

You can define your own functions to add new functionality, or to
make frequently-used code easier to reference.
Define a function using the function keyword:

function name(parameters) {
 statements
}

 Opensource.com: GNU awk Cheat Sheet PAGE 2 OF 2 BY JIM HALL

opensource.com Twitter @opensourceway | facebook.com/opensourceway | CC BY-SA 4.0

http://twitter.com/opensourceway
http://www.facebook.com/opensourceway
https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/
https://opensource.com/

