
The Open Source Guide to
DevOps Monitoring Tools

OPENSOURCE.COM

http://www.opensource.com

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 3

. OPENSOURCE.COM

ABOUT OPENSOURCE.COM

What is Opensource.com?

OPENSOURCE.COM publishes stories about creating,
adopting, and sharing open source

solutions. Visit Opensource.com to learn more about how the open source
way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Submit a story idea: https://opensource.com/story

Email us: open@opensource.com

Chat with us in Freenode IRC: #opensource.com

https://creativecommons.org/licenses/by-sa/4.0/
http://www.Opensource.com
http://www.opensource.com
http://www.Opensource.com
http://www.Opensource.com
https://www.Opensource.com
http://www.Opensource.com
https://opensource.com/story
mailto:open%40opensource.com?subject=Story%20Proposal
https://freenode.net/#opensource.com

4 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

ABOUT THE AUTHOR .

DAN BARKER

DAN SPENT 12 YEARS in the military as a fighter jet mechanic
before transitioning to a career in

technology as a Software Engineer. He's now the Chief Architect at the National
Association of Insurance Commissioners (NAIC).
He's leading technical and cultural transformations
for the NAIC, a nonprofit organization focused on
consumer protection in the insurance industry.
He's an active participant in the CNCFs Serverless
Working Group and CloudEvents project. Dan is
also an organizer of the DevOps KC Meetup and
the DevOpsDays KC conference.

CONTACT DAN

Website: http://danbarker.codes

Email: dan@danbarker.codes

Twitter: https://twitter.com/@barkerd427

https://creativecommons.org/licenses/by-sa/4.0/
http://www.Opensource.com
http://danbarker.codes
mailto:dan%40danbarker.codes?subject=
https://twitter.com/@barkerd427

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 5

. CONTENTS

INTRODUCTION

CHAPTERS

GET INVOLVED | ADDITIONAL RESOURCES

A tale of two views 6

4 open source monitoring tools 8
3 open source log aggregation tools 12
5 alerting and visualization tools 15
3 open source distributed tracing tools 20

Get involved | Additional Resources 22
Write for Us | Keep in Touch 23

https://creativecommons.org/licenses/by-sa/4.0/
http://www.Opensource.com

A TALE OF TWO VIEWS .

6 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

ONCE UPON A TIME, I was trouble-
shooting some

vexing problems in an application that needed to be scaled
several orders of magnitude with only a couple of weeks to
re-architect it. We had no log aggregation, no metrics ag-
gregation, no distributed tracing, and no visualization. Most
of our work had to be done on the actual production nodes
using tools like strace and grepping through logs. These
are great tools, but they don’t make it easy to analyze a dis-
tributed system across doz-
ens of hosts. We got the job
done, but it was painful and
involved a lot more guessing
and risk than I’d prefer.

At a different job, I was help-
ing to troubleshoot an app in
production that was suffering
from an out of memory (OOM)
issue. The problem was in-
consistent, as it didn’t seem
to correlate with running time,
load, time of day, or any other
aspect that would provide some predictability. This was obvi-
ously going to be a difficult problem to diagnose on a system
that spanned hundreds of hosts with many applications calling
it. Luckily, we had log aggregation, distributed tracing, metrics
aggregation, and a plethora of visualizations. We looked at
our memory graph and saw a distinct spike in memory usage,
so we used that spike to alert us so we could diagnose the
issue in real time when it occurred.

When we received an alert, we went to our log aggrega-
tion system to correlate the logs to the memory spike. We
found the OOM error and the related calls around it. We now
understood what application was calling the service that re-
sulted in the spike and used that information to find the exact
transaction that caused the issue. We determined that some-
one had stored a huge file in a database that our service
was now trying to load, but the service was running out of
memory before it could fully load and process the record. We
should have been defending against this in the first place,
but we were happy to find it so quickly and fix it with very little
effort. Once we understood the error, we discovered a lot of
records had large files like this, and we didn’t need that part
of the record to function properly.

You might think the second situation happened a long time
after the first and we had improved over time. Or maybe you
suspect that when I changed jobs, my new company had
better tooling. In reality, the second situation happened be-
fore the first. I moved from a company with fairly advanced
observability tools to one with no observability tools. It was
strikingly disturbing as the developer to have an application
in production and know nothing about it. I learned a lot about
the importance of system observability and the related tools

as I began rebuilding that
infrastructure. Also, Mike Ju-
lian’s Practical Monitoring [1]
is a must-read for those who
want to know more about
their systems.

Observability principles
So, what are observability
tools? Actually, what is
observability?

Observability isn’t just a
marketing term; it’s a com-

ponent of control theory [2]. If you want to get a quick primer,
this video [3] might be helpful. Basically, observability means
that you can estimate a particular state of a system based
on an output. More generally, a system’s state should be de-
terministic from its outputs. Controllability, the mathematical
dual of observability [4], of a system requires that a system
state be determined by the inputs to the system.

This is a fairly simple concept, but it’s very challenging to
put into practice. In a sufficiently complex system, it may be
nearly impossible to implement full observability. However,
you should strive to get the right outputs that allow you to de-
termine the system’s state, especially when you encounter
a failure mode.

Observability tool types
Over the next few chapters we’ll dig into different types of
observability tools. For each type, we’ll cover what they’re
used for, what specific tools are available, some use cas-
es, and any unique characteristics that may come up during
your search for a new tool. These are presented in the order
you should implement them. Metrics aggregation is first, as
it’s often easy to instrument an application built with any

A tale of two views

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.practicalmonitoring.com/
https://en.wikipedia.org/wiki/Control_theory
https://www.youtube.com/watch?v=iRZmJBcg1ZA
https://en.m.wikipedia.org/wiki/Duality_(mathematics)

. A TALE OF TWO VIEWS

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 7

modern language. Second is logging because it will require
more application modifications but provides tremendous
value. Third is alerting and visualizations, which require the
first two types for full functionality. And last is distributed trac-
ing, as it may not be necessary in a simple monolith and is
much harder to implement fully.

Metrics aggregation
This type of tool generally consists of time-series data.
Time-series data is time-ordered data, and it is normally col-
lected with an internally consistent interval. This consistency
allows for some advanced calculations to be applied to the
series and provides for predictive analytics using simple
regressions or more advanced algorithms.

Log aggregation
These tools deal with data types that are related more to
events than to a series of consistent data points. This output
is often emitted as a system enters some undesired state.
Some systems output a lot of logs that don’t fit this condi-
tion. We’ll cover more of the do’s and don’ts of logging in a
future chapter.

Alerting/visualizations
This may not appear to fit with the other types listed, as it’s
really subsequent to the others, but it provides a consum-
able output for the other types and can produce its own
outputs. These types of tools generally make the system
more understandable to humans. They also help create a
more interactive system through both proactive and reac-
tive notifications about negative system states.

Distributed tracing
Much like tracing within a single application, distributed trac-
ing allows you to follow a single transaction through an entire
system. This allows you to home in on specific transactions
that might be experiencing problems. Due to performance
concerns, a sampling algorithm is often applied.

Common DevOps features
There are several aspects you should look for in any type of
observability tool. We’ll cover these generally now and will
bring them back up in later chapters.

OpenAPI
This specification was previously called Swagger but re-
named when it was adopted by the OpenAPI Initiative
within the Linux Foundation. The OpenAPI Specification is
a language-agnostic tool that can automatically generate
documentation of methods, parameters, and models. This
is commonly used to generate RESTful interfaces in HTTP,
but it is also protocol-agnostic. A user can create a client in
almost any language if one doesn't already exist. Every tool
should have this type of API (or should be getting it soon).

If your tool doesn’t have it yet, you may want to look else-
where. Tools that haven't implemented this specification or
don't have it on their roadmap likely have other deficiencies
in adopting open, modern standards and code.

Open source
There are a lot of good tools in this space that aren’t open
source but may be the right fit for your company. If you
pick one of those tools, make sure its documentation and
accessory tooling are open source. Open source observ-
ability tools can provide valuable insights into how your
other observability tools are functioning (or maybe not
functioning). They also offer all the other benefits of any
open source project which you can read more about on
opensource.com [5].

Open standards
Regardless of whether or not a tool is open source, it should
always use open standards when possible. We’ve already
discussed one of these, OpenAPI, but there are many more.
We’ll discuss these standards in the appropriate sections to
ensure you know they exist and where they’re used.

Wide dissemination
Part of observability and openness is allowing everyone to
view data. The tools you pick should be open by default.
You may want to restrict some areas, but you’ll want to de-
fault to open and limit access only if it’s absolutely required.
You never know who in your company might want to solve
your problem or who you’ll need to bring in to help solve
a problem. The last thing you’ll want are access barriers
when troubleshooting your income source.

Federated model (preferred)
This is similar to defaulting to open, but it allows everyone
to provide input and control their own areas more locally.
Many legacy systems are architected in a way that requires
all data to flow through a central system regardless of need.
This also centralizes control around that data. A federated
system allows for local aggregation, processing, and control
while allowing a central organization to collect the same data
or summarized data. The central system likely only wants
a subset of the data stored at the local level. This model
increases agility, flexibility, and usability.

In the following chapters, we’ll be exploring each of the
observability tool types in more detail. We’ll also help you
choose the right tool for your use case.

Links
[1] https://www.practicalmonitoring.com/
[2] https://en.wikipedia.org/wiki/Control_theory
[3] https://www.youtube.com/watch?v=iRZmJBcg1ZA
[4] https://en.m.wikipedia.org/wiki/Duality_(mathematics)
[5] https://opensource.com/

https://creativecommons.org/licenses/by-sa/4.0/
http://www.Opensource.com
https://opensource.com/
https://www.practicalmonitoring.com/
https://en.wikipedia.org/wiki/Control_theory
https://www.youtube.com/watch?v=iRZmJBcg1ZA
https://en.m.wikipedia.org/wiki/Duality_(mathematics)
https://opensource.com/

8 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

4 OPEN SOURCE MONITORING TOOLS .

ISN’T MONITORING JUST MONITORING? Doesn’t
it include logging, vi-

sualization, and time-series data? The terminology around
monitoring has caused a lot of confusion over the years
and has led to some poor tools that tout the ability to do ev-
erything in one format. Observability proponents recognize
there are many levels for observing a system. Metrics ag-
gregation is primarily time-series data, and that’s what we’ll
discuss in this chapter.

Features of time-series data

Counters
A counter is a metric that represents a numeric value that
will only increase. (In other words, a counter should never
decrease.) Counters accumulate values and present the
current total when requested. These are commonly used
for things like the total number of web requests, number of
errors, number of visitors,
etc. This is analogous to the
person with a counter device
standing at the entrance to an
event counting all the people
entering. There is generally
no option to decrement the
counter without resetting it.

Gauges
A gauge is similar to a count-
er in that it represents a sin-
gle numeric value, but it can
also decrease. It is essential-
ly a representation of some value at a point in time. A ther-
mometer is a good example of a gauge. It moves up and
down with the temperature and offers a point-in-time read-
ing. Other uses include CPU usage, memory usage, network
usage, and number of threads.

Quantiles
Quantiles aren’t a type of metric, but they’re germane to
the next two sections, histograms and summaries. Let’s
clarify our understanding of quantiles with an example. A
percentile is a type of quantile. Percentiles are something
we see regularly, and they should help us understand the
general concept more easily. A percentile has 100 “buck-
ets” of values. We often see them related to testing or per-
formance and generally stated as someone scoring within
the 85th percentile or some other value. This means the
person scoring within that percentile had a real value that
fell within the bucket between the 85th and 86th percen-
tile. This person also scored in the top 15% of all students.
We don’t know the scores in the bucket based off this met-
ric, but that can be derived based on the sum of all scores
in the bucket divided by the count of those scores. Quan-
tiles allow us to understand our data better than using a
mean or some other statistical function that doesn’t take

into account outliers and
uneven distributions.

Histograms
A histogram is a little more
complicated than a counter
or a gauge. It is a sample of
observations. It consists of
a counter, which counts all
the observations, and what
is essentially a gauge that
sums the values of the ob-
servations. It uses “buckets”
or groupings to segment the

values in order to bound the datasets in a productive way.
This is commonly seen with quantiles related to request
service-level agreements (SLAs). Let’s say we want to en-
sure 95% of our requests are below 500ms. We could use
a bucket with an upper bound of 0.5s to collect all values

4 open source
monitoring tools

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. 4 OPEN SOURCE MONITORING TOOLS

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 9

that fall under 500ms. We would then be able to determine
how many of the total requests have fallen into that bucket.
We can also determine how far we are from our SLA, but
this can be difficult to do (as is explained more in the Pro-
metheus documentation [1]).

Histograms are aggregate metrics that are accumulated
from multiple instances into a central server. This provides
an opportunity to understand the system as a whole rather
than on a node by node basis.

Summaries
Summaries are similar to histograms in that they are a sam-
ple of observations, but the aggregation occurs on the serv-
er side. Also, the estimate of the quantile is more accurate
than in a histogram. A summary also uses a sliding time
window, so it serves a slightly different case than a histo-
gram but is generally used for the same types of metrics.
I normally use a histogram unless I need a very accurate
measure of the quantile.

Push/pull
No chapter can be written about metrics aggregation tools
without addressing the push vs. pull debate. What is it? The
debate centers around whether it is better for your metrics
aggregation system to have data pushed to it or to have
your metrics aggregation system reach out and gather the
data by scraping an endpoint. Multiple articles discuss this
(like this one [2] and this one [3]). My perspective is that
it mostly doesn’t matter. Additional research is left to the
reader’s discretion.

Tool options
There are many tools available, both open source and com-
mercial. We will focus on open source tools, but some of
these have an open core model with a paid component.

Some of these tools feature additional components of
observability—principally alerting and visualizations. These
will be covered in this section as additional features and
won’t be covered in subsequent chapters.

Prometheus
This is the most well-recognized time-series monitoring
solution for cloud-native applications. It is hosted within the
Cloud Native Computing Foundation (CNCF), but it was
created by Matt Proud and Julius Volz and sponsored by
SoundCloud, with external contributors coming in early to
help develop it. Brian Brazil of Robust Perception [4] has
built a business of helping companies adopt Prometheus.
He also has an excellent blog [5] on his website. The Pro-
metheus documentation [6] is extensive and provides a lot
of detail for understanding and using the tool.

Prometheus [7] is a pull-based system that uses local con-
figuration to describe the endpoints to collect from and the
interval desired for collection. Each endpoint has a client

collecting the data and updating that representation upon
each request (or however the client is configured). This data
is collected and saved in a highly efficient storage engine on
local disk. The storage system uses an append-only file per
metric. This storage isn’t lossy, which means the fidelity of
data from a year ago is as high as the data you are collecting
today. However, you may not want to keep that much data
locally. Fortunately, there is an option for remote storage for
long-term retention and analysis.

Prometheus includes an advanced expression language
for selecting and presenting data called PromQL. This data
can be displayed graphically, tabularly, or used by external
systems through a REST API. The expression language
allows a user to create regressions, analyze real-time data,
or trend historical data. Labels are also a great tool for fil-
tering and querying data. Labels can be associated with
each metric name.

Prometheus also offers a federation model, which encour-
ages more localized control by allowing teams to have their
own Prometheis while central teams [8] can also have their
own. The central systems could scrape the same endpoints
as the local Prometheis, but they can also scrape the lo-
cal Proemetheis to get the aggregated data that the local
instances are collecting. This reduces overhead on the end-
points. This federation model also allows local instances to
collect data from each other.

Prometheus comes with AlertManager to handle alerts.
This system allows for aggregation of alerts as well as
more complex flows to limit when an alert is sent. Let’s
say 10 nodes suddenly go down at the same time a switch
goes down. You probably don’t need to send an alert
about the 10 nodes, as everyone who receives them will
likely be unable to do anything until the switch is fixed.
With the AlertManager, it’s possible to send an alert only
to the networking team for the switch and include addition-
al information about other systems that might be affected.
It’s also possible to send an email (rather than a page) to
the systems team so they know those nodes are down and
they don’t need to respond unless the systems don’t come
up after the switch is repaired. If that occurs, then Alert-
Manager will reactivate those alerts that were suppressed
by the switch alert.

Graphite
Graphite [9] has been around for a long time, and the recent
book The Art of Monitoring [10] covers Graphite in detail.
Graphite has become ubiquitous in the industry, with many
large companies using it at scale.

Graphite is a push-based system that receives data
from applications by having the application push the data
into Graphite’s Carbon component. Carbon stores this
data in the Whisper database, and that database and Car-
bon are read by the Graphite web component that allows
a user to graph their data in a browser or pull it through

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://prometheus.io/docs/practices/histograms/
https://thenewstack.io/exploring-prometheus-use-cases-brian-brazil/
https://prometheus.io/blog/2016/07/23/pull-does-not-scale-or-does-it/
https://www.robustperception.io/
https://www.robustperception.io/blog
https://prometheus.io/docs/
https://prometheus.io/
https://prometheus.io/docs/introduction/faq/#what-is-the-plural-of-prometheus
https://graphiteapp.org/
https://artofmonitoring.com/

4 OPEN SOURCE MONITORING TOOLS .

10 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

single host, while the commercial version is inherently
distributed. This is true of the other central components
as well. In the open source version, everything runs on a
single host. No data or configuration is stored on external
systems, so it is fairly easy to manage, but it isn’t as ro-
bust as the commercial version.

InfluxDB includes a SQL-like language called InfluxQL for
querying data from the databases. The primary means for
querying data is the HTTP API. The query language doesn’t
have as many built-in helper functions as Prometheus, but
those familiar with SQL will likely feel more comfortable with
the language.

The TICK stack also includes an alerting system. This sys-
tem can do some mild aggregation but doesn’t have the full
capabilities of Prometheus’ AlertManager. It does offer many
integrations, though. Also, to reduce load on InfluxDB, con-
tinuous queries can be scheduled to store results of queries
that Kapacitor will pick up for alerting.

OpenTSDB
OpenTSDB [15] is an open source time-series database,
as its name implies. It’s unique in this collection of tools
in that it stores its metrics in Hadoop. This means it is
inherently scalable. If you already have a Hadoop cluster,
this might be a good option for metrics you want to store
over the long term. If you don’t have a Hadoop cluster, the
operational overhead might be too large of a burden for
you to bear. However, OpenTSDB now supports Google’s
Bigtable as a backend, which is a cloud service you don’t
have to operate.

OpenTSDB shares a lot of features with the other systems.
It uses a key-value pairing system it calls tags for identifying
metrics and adding dimensionality. It has a query language,
but it is more limited than Prometheus’ PromQL. It does,
however, have several built-in functions that help with learn-
ing and usage. The API is the main entry point for querying,
similar to InfluxDB. This system also stores all data forever,
unless there’s a time-to-live set in HBase, so you don't have
to worry about fidelity degradation.

OpenTSDB doesn’t offer an alerting capability, which
will make it harder to integrate with your incident response
process. This type of system might be great for long-term
Prometheus data storage and for performing more historical
analytics to reveal systemic issues, rather than as a tool to
quickly identify and respond to acute concerns.

OpenMetrics standard
OpenMetrics [16] is a working group seeking to establish
a standard exposition format for metrics data. It is influ-
enced by Prometheus. If this initiative is successful, we’ll
have an industry-wide abstraction that would allow us to
switch between tools and providers with ease. Leading
companies like Datadog [17] have already started offering
tools that can consume the Prometheus exposition format,

an API. A really cool feature is the ability to export these
graphs as images or data files to easily embed them in
other applications.

Whisper is a fixed-size database that provides fast, reliable
storage of numeric data over time. It is a lossy database,
which means the resolution of your metrics will degrade over
time. It will provide high-fidelity metrics for the most recent
collections and gradually reduce that fidelity over time.

Graphite also uses dot-separated naming, which implies
dimensionality. This dimensionality allows for some creative
aggregation of metrics and relationships between metrics.
This enables aggregation of services across different ver-
sions or data centers and (getting more specific) a single
version running in one data center in a specific Kubernetes
cluster. Granular-level comparisons can also be made to de-
termine if a particular cluster is underperforming.

Another interesting feature of Graphite is the ability to store
arbitrary events that should be related to time-series metrics.
In particular, application or infrastructure deployments can
be added and tracked within Graphite. This allows the op-
erator or developer troubleshooting an issue to have more
context about what has happened in the environment related
to the anomalous behavior being investigated.

Graphite also has a substantial list of functions [11] that
can be applied to metrics series. However, it lacks a powerful
query language, which some other tools include. It also lacks
any alerting functionality or built-in alerting system.

InfluxDB
InfluxDB [12] is a relatively new entrant, newer than Pro-
metheus. It uses an open core model, which means scal-
ing and clustering cost extra. InfluxDB is part of the larger
TICK stack [13] (of Telegraf, InfluxDB, Chronograf, and
Kapacitor), so we will include all those components’ fea-
tures in this analysis.

InfluxDB uses a key-value pair system called tags to
add dimensionality to metrics, similar to Prometheus and
Graphite. The results are similar to what we discussed
previously for the other systems. The metric data can be
of type float64, int64, bool, and string with nanosec-
ond resolution. This is a broader range than most other
tools in this space. In fact, the TICK stack is more of an
event-aggregation platform than a native time-series met-
rics-aggregation system.

InfluxDB uses a system similar to a log-structured merge
tree for storage. It is called a time-structured merge tree in
this context. It uses a write-ahead log and a collection of
read-only data files, which are similar to Sorted Strings Ta-
bles but have series data rather than pure log data. These
files are sharded per block of time. To learn more, check out
this great resource on the InfluxData website [14].

The architecture of the TICK stack is different depend-
ing on if it’s the open source or commercial version. The
open source InfluxDB system is self-contained within a

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
http://opentsdb.net/
https://github.com/RichiH/OpenMetrics
https://www.datadoghq.com/blog/monitor-prometheus-metrics/
http://graphite.readthedocs.io/en/latest/functions.html
https://www.influxdata.com/
https://www.thoughtworks.com/radar/platforms/tick-stack
https://docs.influxdata.com/influxdb/v1.5/concepts/storage_engine/

. 4 OPEN SOURCE MONITORING TOOLS

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 11

which will be easy to convert to the OpenMetrics standard
once it’s released.

It’s also important to note that the contributors to this
project include Google and InfluxData (among others).
This likely means InfluxDB will eventually adopt the
OpenMetrics standard. This may also mean that one of
the three largest cloud providers will adopt it, if Google’s
involvement is an indicator. Of course, the exposition for-
mat is already being used in the Google-created Kuber-
netes project [18]. SolarWinds, Robust Perceptions, and
SpaceNet are also involved.

Links
[1] https://prometheus.io/docs/practices/histograms/
[2] https://thenewstack.io/exploring-prometheus-use-cases-

brian-brazil/
[3] https://prometheus.io/blog/2016/07/23/pull-does-not-scale-

or-does-it/

[4] https://www.robustperception.io/
[5] https://www.robustperception.io/blog
[6] https://prometheus.io/docs/
[7] https://prometheus.io/
[8] https://prometheus.io/docs/introduction/faq/#what-is-the-

plural-of-prometheus
[9] https://graphiteapp.org/
[10] https://artofmonitoring.com/
[11] http://graphite.readthedocs.io/en/latest/functions.html
[12] https://www.influxdata.com/
[13] https://www.thoughtworks.com/radar/platforms/tick-stack
[14] https://docs.influxdata.com/influxdb/v1.5/concepts/

storage_engine/
[15] http://opentsdb.net/
[16] https://github.com/RichiH/OpenMetrics
[17] https://www.datadoghq.com/blog/monitor-prometheus-

metrics/
[18] https://opensource.com/resources/what-is-kubernetes

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/what-is-kubernetes
https://prometheus.io/docs/practices/histograms/
https://thenewstack.io/exploring-prometheus-use-cases-brian-brazil/
https://thenewstack.io/exploring-prometheus-use-cases-brian-brazil/
https://prometheus.io/blog/2016/07/23/pull-does-not-scale-or-does-it/
https://prometheus.io/blog/2016/07/23/pull-does-not-scale-or-does-it/
https://www.robustperception.io/
https://www.robustperception.io/blog
https://prometheus.io/docs/
https://prometheus.io/
https://prometheus.io/docs/introduction/faq/#what-is-the-plural-of-prometheus
https://prometheus.io/docs/introduction/faq/#what-is-the-plural-of-prometheus
https://graphiteapp.org/
https://artofmonitoring.com/
http://graphite.readthedocs.io/en/latest/functions.html
https://www.influxdata.com/
https://www.thoughtworks.com/radar/platforms/tick-stack
https://docs.influxdata.com/influxdb/v1.5/concepts/storage_engine/
https://docs.influxdata.com/influxdb/v1.5/concepts/storage_engine/
http://opentsdb.net/
https://github.com/RichiH/OpenMetrics
https://www.datadoghq.com/blog/monitor-prometheus-metrics/
https://www.datadoghq.com/blog/monitor-prometheus-metrics/
https://opensource.com/resources/what-is-kubernetes

3 OPEN SOURCE LOG AGGREGATION TOOLS .

12 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

HOW IS METRICS AGGREGATION different from
log aggregation? Can’t

logs include metrics? Can’t log aggregation systems do the
same things as metrics aggregation systems? These are
questions I see a lot. I’ve also seen vendors pitching their
log aggregation system as the solution to all observability
problems. Log aggregation is a valuable tool, but it isn’t
normally a good tool for time-series data.

A couple of valuable features in a time-series metrics ag-
gregation system are the regular interval and the storage
system customized specifically for time-series data. The
regular interval allows a user to derive real mathematical
results consistently. If a log aggregation system is collect-
ing metrics in a regular interval, it can potentially work the
same way. However, the storage system isn’t optimized
for the types of queries that are typical in a metrics ag-
gregation system. These queries will take more resources
and time to process using
storage systems found in
log aggregation tools.

So, we know a log ag-
gregation system is likely
not suitable for time-series
data, but what is it good for?
A log aggregation system is
a great place for collecting
event data. These are irreg-
ular activities that are signif-
icant. An example might be
access logs for a web ser-
vice. These are significant
because we want to know what is accessing our systems
and when. Another example would be an application error

condition—because it is not a normal operating condition,
it might be valuable during troubleshooting.

A handful of rules for logging:
• DO include a timestamp
• DO format in JSON
• DON’T log insignificant events
• DO log all application errors
• MAYBE log warnings
• DO turn on logging
• DO write messages in a human-readable form
• DON’T log informational data in production
• DON’T log anything a human can’t read or react to

Cloud costs
When investigating log aggregation tools, the cloud might
seem like an attractive option. However, it can come with
significant costs. Logs represent a lot of data when aggre-

gated across hundreds or
thousands of hosts and ap-
plications. The ingestion,
storage, and retrieval of that
data are expensive in cloud-
based systems.

As a point of reference
from a real system, a col-
lection of around 500 nodes
with a few hundred apps re-
sults in 200GB of log data
per day. There’s probably
room for improvement in that
system, but even reducing it

by half will cost nearly $10,000 per month in many SaaS
offerings. This often includes retention of only 30 days,

3 open source
log aggregation tools

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com

. 3 OPEN SOURCE LOG AGGREGATION TOOLS

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 13

which isn’t very long if you want to look at trending data year-
over-year.

This isn’t to discourage the use of these systems, as they
can be very valuable—especially for smaller organizations.
The purpose is to point out that there could be significant
costs, and it can be discouraging when they are realized.
The rest of this chapter will focus on open source and
commercial solutions that are self-hosted.

Tool options

ELK
ELK [1], short for Elasticsearch, Logstash, and Kibana, is the
most popular open source log aggregation tool on the market.
It’s used by Netflix, Facebook, Microsoft, LinkedIn, and Cisco.
The three components are all developed and maintained by
Elastic [2]. Elasticsearch [3] is essentially a NoSQL, Lucene
search engine implementation. Logstash [4] is a log pipeline
system that can ingest data, transform it, and load it into a
store like Elasticsearch. Kibana [5] is a visualization layer on
top of Elasticsearch.

A few years ago, Beats were introduced. Beats are data
collectors. They simplify the process of shipping data to Log-
stash. Instead of needing to understand the proper syntax
of each type of log, a user can install a Beat that will export
NGINX logs or Envoy proxy logs properly so they can be
used effectively within Elasticsearch.

When installing a production-level ELK stack, a few
other pieces might be included, like Kafka [6], Redis [7],
and NGINX [8]. Also, it is common to replace Logstash
with Fluentd, which we’ll discuss later. This system can be
complex to operate, which in its early days led to a lot of
problems and complaints. These have largely been fixed,
but it’s still a complex system, so you might not want to try
it if you’re a smaller operation.

That said, there are services available so you don’t have
to worry about that. Logz.io [9] will run it for you, but its list
pricing is a little steep if you have a lot of data. Of course,
you’re probably smaller and may not have a lot of data. If you
can’t afford Logz.io, you could look at something like AWS
Elasticsearch Service (ES) [10]. ES is a service Amazon
Web Services (AWS) offers that makes it very easy to get
Elasticsearch working quickly. It also has tooling to get all
AWS logs into ES using Lambda and S3. This is a much
cheaper option, but there is some management required and
there are a few limitations.

Elastic, the parent company of the stack, offers [11] a
more robust product that uses the open core model, which
provides additional options around analytics tools, security
tools, and reporting. It can also be hosted on Google Cloud
Platform or AWS. This might be the best option, as this
combination of tools and hosting platforms offers a cheaper
solution than most SaaS options and still provides a lot of
value. This system could effectively replace or give you the

capability of a security information and event management
(SIEM) system [12].

The ELK stack also offers great visualization tools
through Kibana, but it lacks an alerting function. Elastic
provides alerting functionality within the paid X-Pack add-
on, but there is nothing built in for the open source sys-
tem. Yelp has created a solution to this problem, called
ElastAlert [13], and there are probably others. This addi-
tional piece of software is fairly robust, but it increases the
complexity of an already complex system.

Graylog
Graylog [14] has recently risen in popularity, but it got its
start when Lennart Koopmann created it back in 2010. A
company was born with the same name two years later.
Despite its increasing use, it still lags far behind the ELK
stack. This also means it has fewer community-developed
features, but it can use the same Beats that the ELK stack
uses. Graylog has gained praise in the Go community with
the introduction of the Graylog Collector Sidecar written
in Go [15].

Graylog uses Elasticsearch, MongoDB [16], and the Gray-
log Server under the hood. This makes it as complex to run
as the ELK stack and maybe a little more. However, Graylog
comes with alerting built into the open source version, as
well as several other notable features like streaming, mes-
sage rewriting, and geolocation.

The streaming feature allows for data to be routed to spe-
cific Streams in real time while they are being processed.
With this feature, a user can see all database errors in a
single Stream and web server errors in a different Stream.
Alerts can even be based on these Streams as new items
are added or when a threshold is exceeded. Latency is prob-
ably one of the biggest issues with log aggregation systems,
and Streams eliminate that issue in Graylog. As soon as the
log comes in, it can be routed to other systems through a
Stream without being processed fully.

The message rewriting feature uses the open source rules
engine Drools [17]. This allows all incoming messages to be
evaluated against a user-defined rules file enabling a mes-
sage to be dropped (called Blacklisting); a field to be added
or removed; or the message to be modified.

The coolest feature might be Graylog’s geolocation capa-
bility, which supports plotting IP addresses on a map. This is
a fairly common feature and is available in Kibana as well,
but it adds a lot of value—especially if you want to use this as
your SIEM system. The geolocation functionality is provided
in the open source version of the system.

Graylog, the company, charges for support on the open
source version if you want it. It also offers an open core
model for its Enterprise version that offers archiving, audit
logging, and additional support. There aren’t many other
options for support or hosting, so you’ll likely be on your
own if you don’t use Graylog (the company).

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.elastic.co/webinars/introduction-elk-stack
https://www.elastic.co/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
http://kafka.apache.org/
https://redis.io/
https://www.nginx.com/
https://logz.io/
https://aws.amazon.com/elasticsearch-service/
https://www.elastic.co/cloud
https://en.wikipedia.org/wiki/Security_information_and_event_management
https://github.com/Yelp/elastalert
https://www.graylog.org/
https://opensource.com/tags/go
https://www.mongodb.com/
https://www.drools.org/

3 OPEN SOURCE LOG AGGREGATION TOOLS .

14 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

Links
[1] https://www.elastic.co/webinars/introduction-elk-stack
[2] https://www.elastic.co/
[3] https://www.elastic.co/products/elasticsearch
[4] https://www.elastic.co/products/logstash
[5] https://www.elastic.co/products/kibana
[6] http://kafka.apache.org/
[7] https://redis.io/
[8] https://www.nginx.com/
[9] https://logz.io/
[10] https://aws.amazon.com/elasticsearch-service/
[11] https://www.elastic.co/cloud
[12] https://en.wikipedia.org/wiki/Security_information_and_

event_management
[13] https://github.com/Yelp/elastalert
[14] https://www.graylog.org/
[15] https://opensource.com/tags/go
[16] https://www.mongodb.com/
[17] https://www.drools.org/
[18] https://www.fluentd.org/
[19] https://www.treasuredata.com/
[20] https://www.cncf.io/
[21] https://aws.amazon.com/blogs/aws/all-your-data-fluentd/
[22] https://cloud.google.com/logging/docs/agent/
[23] https://opensource.com/resources/what-is-kubernetes

Fluentd
Fluentd [18] was developed at Treasure Data [19], and the
CNCF [20] has adopted it as an Incubating project. It was
written in C and Ruby and is recommended by AWS [21]
and Google Cloud [22]. Fluentd has become a common
replacement for Logstash in many installations. It acts
as a local aggregator to collect all node logs and send
them off to central storage systems. It is not a log ag-
gregation system.

It uses a robust plugin system to provide quick and
easy integrations with different data sources and data
outputs. Since there are over 500 plugins available, most
of your use cases should be covered. If they aren’t, this
sounds like an opportunity to contribute back to the open
source community.

Fluentd is a common choice in Kubernetes environ-
ments due to its low memory requirements (just tens of
megabytes) and its high throughput. In an environment
like Kubernetes [23], where each pod has a Fluentd side-
car, memory consumption will increase linearly with each
new pod created. Using Fluentd will drastically reduce
your system utilization. This is becoming a common prob-
lem with tools developed in Java that are intended to run
one per node where the memory overhead hasn’t been a
major issue.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.elastic.co/webinars/introduction-elk-stack
https://www.elastic.co/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
http://kafka.apache.org/
https://redis.io/
https://www.nginx.com/
https://logz.io/
https://aws.amazon.com/elasticsearch-service/
https://www.elastic.co/cloud
https://en.wikipedia.org/wiki/Security_information_and_event_management
https://en.wikipedia.org/wiki/Security_information_and_event_management
https://github.com/Yelp/elastalert
https://www.graylog.org/
https://opensource.com/tags/go
https://www.mongodb.com/
https://www.drools.org/
https://www.fluentd.org/
https://www.treasuredata.com/
https://www.cncf.io/
https://aws.amazon.com/blogs/aws/all-your-data-fluentd/
https://cloud.google.com/logging/docs/agent/
https://opensource.com/resources/what-is-kubernetes
https://www.fluentd.org/
https://www.treasuredata.com/
https://www.cncf.io/
https://aws.amazon.com/blogs/aws/all-your-data-fluentd/
https://cloud.google.com/logging/docs/agent/
https://opensource.com/resources/what-is-kubernetes

. 5 ALERTING AND VISUALIZATION TOOLS

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 15

PERHAPS IT’S CLEAR BY THE NAME what alerting
and visualization tools are used

for, but it might not be clear why they are observability tools
or why they’re separated here. Some systems include the
visualization component in their main product, so why sep-
arate it here? Observability comes from control theory and
describes our ability to understand a system based on its
inputs and outputs. This chapter focuses on the output com-
ponent of observability.

Alerting and visualization systems are focused on under-
standing the outputs of other systems. This is why they’re
grouped together. Visualization and alerting tools could be
described as tools that provide structured representations
of system outputs. Alerts are basically a synthesized un-
derstanding of negative system outputs, and visualizations
are disambiguated structured representations focused on
facilitating user comprehension.

As already mentioned, some systems come with these
tools built in, and those have been covered in other sections
with those tools.

Common types of alerts and visualizations

Alerts
Let’s first cover what alerts are not. Alerts should not be sent
if the human responder can’t do anything about the problem.
This includes alerts that go to multiple individuals with only
a few who can respond or situations where every anoma-
ly in the system triggers an
alert. This leads to alert fa-
tigue and receivers ignoring
all alerts within a specific
medium until the system es-
calates to a medium that isn’t
already saturated.

For example, if an oper-
ator is getting hundreds of
emails a day from the alert-
ing system, that operator is
going to ignore all emails

from the alerting system. The operator will only respond
to a real incident when he or she is experiencing the prob-
lem, emailed by a customer, or called by the boss. In this
case, alerts have lost their meaning and usefulness.

Alerts are not a constant stream of information or a
status update. They are meant to convey a problem from
which the system can’t automatically recover, and they
are sent only to the individual most likely to be able to
recover the system. Everything that falls outside this defi-
nition isn’t an alert and is only hurting your employees and
company culture.

Everyone has a different set of alert types, so I’ll not
cover things like priority levels (P1-P5) or models that use
words like Informational, Warning, and Critical. Instead,
I’ll describe the generic categories emergent in complex
systems’ incident response.

You might have noticed I mentioned an “Informational”
alert type right after I wrote that alerts shouldn’t be in-
formational. Well, not everyone agrees, but also I don’t
consider something an alert if it isn’t sent to anyone. It
is a data point that many systems refer to as an alert. It
represents some event that should be known but not re-
sponded to. It is generally part of the visualization system
of the alerting tool and not an event that triggers actual
notifications. Mike Julian covers this and other aspects of
alerting in his book Practical Monitoring [1]. It’s a must
read for work in this area.

Non-informational alerts consist of types that can be
responded to or require ac-
tion. I group these into two
categories: internal outage
and external outage. (Most
companies have more lev-
els than this for prioritizing
their response efforts.) De-
graded system performance
is considered an outage in
this model, as it’s usually
unknown how bad the im-
pact is to each user.

5 alerting and
visualization tools

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.practicalmonitoring.com/

5 ALERTING AND VISUALIZATION TOOLS .

16 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

Another feature of a line chart is that you can often stack
them to show relationships. For example, you might want
to look at requests on each server individually, but also in
aggregate. This allows you to understand both the overall
system as well as each instance in the same graph.

Image source: Grafana (© Grafana Labs)

Heatmaps
Another common visualization is the heatmap. It is useful
when looking at histograms. This type of visualization is sim-
ilar to a bar chart but can show gradients within the bars
representing the different percentiles of the overall metric.
For example, maybe you’re looking at request latencies, and
you want to quickly understand the overall trend as well as
the distribution of all requests. A heatmap is great for this,
and it can use color to disambiguate the quantity of each
section with a quick glance. The heatmap below shows the
higher concentration around the centerline of the graph with
an easy-to-understand visualization of the distribution verti-
cally for each time bucket. We might want to review a couple
of points in time where the distribution gets wide while the
others are fairly tight like at 14:00. This distribution might be
a negative performance indicator.

Image source: Grafana.org (© Grafana Labs)

Gauges
The last common visualization I’ll cover is used to under-
stand a single metric quickly. Gauges can be used to repre-
sent a single metric, like your speedometer represents your
speed or your gas gauge represents the amount of gas in
your car. Similar to the gas gauge, most monitoring gaug-
es clearly indicate what is good and what isn’t. Often (as is
shown below), good is represented by green, getting worse
by orange, and “everything is breaking” by red. The middle
row below shows traditional gauges.

Internal outages are lower priority than external outages, but
they still need to be responded to quickly. They often include
internal systems that company employees use or components
of applications that are visible only to company employees.

External outages consist of any system outage that
would immediately impact a customer. These don’t include a
system outage that prevents releasing updates to the sys-
tem. They do include customer-facing application failures,
database outages, and networking partitions that hurt avail-
ability or consistency if either can impact a user. They also
include outages of tools that may not have direct impact on
users, as the application continues to run, but this trans-
parent dependency impacts performance. This is common
when the system uses some external service or data source
that isn’t necessary for full functionality but may cause de-
lays as the application performs retries or handles errors
from this external dependency.

Visualizations
There are a lot of visualization types, and I won’t cover

them all here. It’s a fascinating area of research. On the
data analytics side of my career, this is a constant struggle
of learning and applying that knowledge. We need to pro-
vide simple representations of complex system outputs for
the widest dissemination of information. Google Charts [2]
and Tableau [3] have a wide selection of visualization types.
We’ll cover the most common visualizations and some in-
novative solutions for quickly understanding systems.

Line chart
The line chart is probably the most common and ubiqui-
tous visualization available. It also does a pretty good job
of producing an understanding of a system over time. A line
chart in a metrics system would have a line for each unique
metric or some aggregation of metrics. This can get confus-
ing when there are a lot of metrics in the same dashboard
(as evidenced below), but most systems can select specific
metrics to view rather than having all of them visible. Also,
anomalous behavior is easy to spot if it’s significant enough
to escape the noise of normal operations. Below we can
see purple, yellow, and light blue lines that might indicate
anomalous behavior.

Image source: Stackoverflow.com (Creative Commons BY SA 3.0)

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://github.com/grafana/grafana
https://grafana.com/
https://developers.google.com/chart/interactive/docs/gallery
https://libguides.libraries.claremont.edu/c.php?g=474417&p=3286401
http://www.Stackoverflow.com

. 5 ALERTING AND VISUALIZATION TOOLS

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 17

able to contribute new and innovative features to make these
systems even better.

Alerting tools

Bosun
If you’ve ever done anything with computers and gotten
stuck, the help you received was probably thanks to a Stack
Exchange system. Stack Exchange runs many different web-
sites around a crowdsourced question-and-answer model.
Stack Overflow [5] is very popular with developers, and Su-
per User [6] is popular with operations. However, there are
now hundreds of sites ranging from parenting to sci-fi and
philosophy to bicycles.

Stack Exchange open sourced its alert management sys-
tem, Bosun [7], around the same time Prometheus and its
AlertManager [8] system were released. There were a lot of
similarities in the two systems, and that’s a really good thing.
Like Prometheus, Bosun is written in Golang. Bosun’s scope
is more extensive than Prometheus’ as it can interact with
systems beyond metrics aggregation. It can also ingest data
from log and event aggregation systems. It supports Graph-
ite, InfluxDB, OpenTSDB, and Elasticsearch.

Bosun’s architecture consists of a single server binary, a
backend like OpenTSDB, Redis, and scollector agents. The
scollector agents [9] automatically detect services on a host
and report metrics for those processes and other system re-
sources. This data is sent to a metrics backend. The Bosun
server binary then queries the backends to determine if any
alerts need to be fired. Bosun can also be used by tools like
Grafana [10] to query the underlying backends through one
common interface. Redis is used to store state and metadata
for Bosun.

A really neat feature of Bosun is that it lets you test your
alerts against historical data. This was something I missed in
Prometheus several years ago when I had data for an issue
I wanted alerts on, but no easy way to test my new alert to
make sure it would work. I had to create and insert dummy
data to test the alert. That was a very time-consuming pro-
cess, and this system alleviates that.

Bosun also has the usual features like showing simple
graphs and creating alerts. It has a powerful expression lan-
guage for writing alerting rules. However, it only has email
and HTTP notification configurations, which means connect-
ing to Slack and other tools requires a bit more customiza-
tion (which its documentation covers [11]). Similar to Pro-
metheus, Bosun can use templates for these notifications,
which means they can look as awesome as you want them
to. You can use all your HTML and CSS skills to create the
baddest email alert anyone has ever seen.

Cabot
Cabot [12] was created by a company called Arachnys [13].
Many may not know who that is or what it does, but you

Image source: Grafana.org (© Grafana Labs)

This image shows more than just traditional gauges,
though. The other gauges are single stat representations
that are similar to the function of the classic gauge. They
all use the same color scheme for quickly indicating system
health with just a glance. Arguably, the bottom row is prob-
ably the best example of a gauge that allows you to glance
at a dashboard and know that everything is healthy (or not).
This type of visualization is usually what I put on a top-level
dashboard. It offers a full, high-level understanding of system
health in seconds.

Flame graphs
A less common visualization is the flame graph. It’s not ide-
al for dashboarding or quickly observing high-level system
concerns; it’s normally seen when trying to understand a
specific application problem. Netflix’s Brendan Gregg intro-
duced them in 2011 [4]. This visualization focuses on CPU
and memory and the associated frames. The X-axis lists the
frames alphabetically, and the Y-axis shows stack depth.
Each rectangle is a stack frame and includes the function
being called. The wider the rectangle, the more it appears in
the stack. This method is invaluable when trying to diagnose
system performance at the application level and I urge every-
one to give them a try.

Image source: Wikimedia.org (Creative Commons BY SA 3.0)

Tool options
There are several commercial options for alerting, but this is
Opensource.com, so we’re not even gonna mention them!
We’ll cover systems that are being used at scale by real
companies that you can use at no cost. Hopefully, you’ll be

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://stackoverflow.com/
https://superuser.com/
http://bosun.org/
https://prometheus.io/docs/alerting/alertmanager/
https://bosun.org/scollector/
https://grafana.com/
https://bosun.org/notifications
https://cabotapp.com/
https://www.arachnys.com/
https://grafana.com/
http://www.brendangregg.com/flamegraphs.html
https://www.wikimedia.org/
https://www.Opensource.com

5 ALERTING AND VISUALIZATION TOOLS .

18 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

other systems. It supports Graphite, StatsD, InfluxDB, and
OpenTSDB as inputs, but it can also forward those metrics
to their respective platforms. This is an interesting concept,
but potentially risky as loads increase on a central service.
However, if the StatsAgg infrastructure is robust enough,
it can still produce alerts even when a backend storage
platform has an outage.

StatsAgg is written in Java and only consists of the main
server and UI, which keeps complexity to a minimum. It can
send alerts based on regular expression matching and is fo-
cused on alerting by service rather than host or instance. Its
goal was to fill a void in the open source observability stack,
and I think it does that quite well.

Visualization tools

Grafana
Almost everyone knows about Grafana [21] and many have
used it. I have been using it for years whenever I need a sim-
ple dashboard. The tool I used before was deprecated, and
Grafana made that okay when at first I was fairly distraught
when I saw the deprecation notice. Grafana was gifted to us
by Torkel Ödegaard. Oddly, Grafana is another project that
was created around Christmas time and released in January
2014. It has come a long way in only a few years. It started
life as a Kibana dashboarding system, which Torkel forked
into what became Grafana.

Grafana’s sole focus is presenting monitoring data in a
more usable and pleasing way. It can natively gather data
from Graphite, Elasticsearch, OpenTSDB, Prometheus, and
InfluxDB. There’s an Enterprise version that uses plugins
for more data sources, but there’s no reason those other
data source plugins couldn’t be created as open source, as
the Grafana plugin ecosystem already offers many other
data sources.

What does Grafana do for me? It provides a central lo-
cation for understanding my system. It is web-based, so
anyone can access the information, although it can be re-
stricted using different authentication methods. Grafana
can provide knowledge at a glance using many different
types of visualizations. However, it has started integrating
alerting and other features that aren’t traditionally combined
with visualizations.

Now you can set alerts visually. That means you can look
at a graph, maybe even one showing where an alert should
have triggered due to some degradation of the system, click
on the graph where you want the alert to trigger, and then
tell Grafana where to send the alert. That’s a pretty powerful
addition that won’t necessarily replace an alerting platform,
but it can certainly help augment it by providing a different
perspective on alerting criteria.

Grafana has also introduced more collaboration features.
Users have been able to share dashboards for a long time,
meaning you don’t have to create your own dashboard for

have probably felt its impact without knowing it. It has built
the leading cloud-based solution for fighting financial crimes.
That sounds pretty cool, right? At a previous company, I was
involved in similar functions around “know your customer"
laws [14]. Many companies would see it as very bad press
to be linked to a terrorist group funneling money through
their systems. These solutions also help defend against
less atrocious offenders like fraudsters who pose a risk to
the institution, even if less so.

So why did Arachnys create Cabot? Well, it is kind of
a Christmas present to everyone, as it was a Christmas
project it built because its developers couldn’t wrap their
heads around Nagios [15]. And really, who can blame
them? Cabot was written with Django and Bootstrap, so
it should be easy for most to contribute to the project. An-
other interesting factoid is that the name comes from the
creator’s dog.

The Cabot architecture is similar to Bosun in that it doesn’t
collect any data. Instead, it accesses data through the APIs
of the tools it is alerting for. Therefore, Cabot uses a pull
(rather than a push) model for alerting. It reaches out into
each system’s API and retrieves the information it needs to
make a decision based on a specific check. Cabot stores the
alerting data in a Postgres database and also has a cache
using Redis.

Cabot natively supports Graphite [16], but it also supports
Jenkins [17], which is rare in this area. Arachnys [18] uses
Jenkins like a centralized cron, but I like this idea of treating
build failures like outages. Obviously, a build failure isn’t as
critical as a production outage, but it could still alert the team
and escalate if the failure isn’t resolved. Who actually checks
Jenkins every time an email comes in about a build failure?
Yeah, me too!

Another interesting feature is that Cabot can integrate
with Google Calendar for on-call rotations. Cabot calls
this feature Rota, which is a British term for a roster or
rotation. This makes a lot of sense, and I wish other sys-
tems would take this idea further. Cabot doesn’t support
anything more complex than primary and backup person-
nel, but there is certainly room for additional features.
The docs say if you want something more advanced, you
should look at a commercial option.

StatsAgg
StatsAgg [19]? How did that make the list? Well, it’s not
every day you come across a publishing company that
has created an alerting platform. I think that deserves
recognition. Pearson [20] isn’t just a publishing company
anymore, though. It has several web presences and a joint
venture with O’Reilly Media. However, I still think of the
company as the people who published my school books
and tests.

StatsAgg isn’t just an alerting platform; it’s also a met-
rics aggregation platform. And it’s kind of like a proxy for

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://grafana.com/
https://en.wikipedia.org/wiki/Know_your_customer
https://www.nagios.org/
https://graphiteapp.org/
https://jenkins.io/
https://www.arachnys.com/
https://github.com/PearsonEducation/StatsAgg
https://www.pearson.com/us/

. 5 ALERTING AND VISUALIZATION TOOLS

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 19

your Kubernetes [22] cluster because there are several al-
ready available—with some maintained by Kubernetes de-
velopers and others by Grafana developers.

The most significant addition around collaboration is anno-
tations. Annotations allow a user to add context to part of a
graph. Then other users can use this context to understand
the system better. This is an invaluable tool when a team is
in the middle of an incident and communication and common
understanding are critical. Having all the information right
where you’re already looking makes it much more likely that
knowledge will be shared across the team quickly. It’s also a
nice feature to use during blameless postmortems when the
team is trying to understand how the failure occurred and
learn more about their system.

Vizceral
Netflix created Vizceral [23] to understand its traffic patterns
better when performing a traffic failover. Unlike Grafana,
which is a more general tool, Vizceral serves a very specific
use-case. Netflix no longer uses this tool internally and says
it is no longer actively maintained, but it still updates the tool
periodically. I highlight it here primarily to point out an inter-
esting visualization mechanism and how it can help solve a
problem. It's worth running it in a demo environment just to
better grasp the concepts and witness what's possible with
these systems.

Links
[1] https://www.practicalmonitoring.com/
[2] https://developers.google.com/chart/interactive/docs/

gallery
[3] https://libguides.libraries.claremont.edu/

c.php?g=474417&p=3286401
[4] http://www.brendangregg.com/flamegraphs.html
[5] https://stackoverflow.com/
[6] https://superuser.com/
[7] http://bosun.org/
[8] https://prometheus.io/docs/alerting/alertmanager/
[9] https://bosun.org/scollector/
[10] https://grafana.com/
[11] https://bosun.org/notifications
[12] https://cabotapp.com/
[13] https://www.arachnys.com/
[14] https://en.wikipedia.org/wiki/Know_your_customer
[15] https://www.nagios.org/
[16] https://graphiteapp.org/
[17] https://jenkins.io/
[18] https://www.arachnys.com/
[19] https://github.com/PearsonEducation/StatsAgg
[20] https://www.pearson.com/us/
[21] https://grafana.com/
[22] https://opensource.com/resources/what-is-kubernetes
[23] https://github.com/Netflix/vizceral

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://opensource.com/resources/what-is-kubernetes
https://github.com/Netflix/vizceral
https://www.practicalmonitoring.com/
https://developers.google.com/chart/interactive/docs/gallery
https://developers.google.com/chart/interactive/docs/gallery
https://libguides.libraries.claremont.edu/c.php?g=474417&p=3286401
https://libguides.libraries.claremont.edu/c.php?g=474417&p=3286401
http://www.brendangregg.com/flamegraphs.html
https://stackoverflow.com/
https://superuser.com/
http://bosun.org/
https://prometheus.io/docs/alerting/alertmanager/
https://bosun.org/scollector/
https://grafana.com/
https://bosun.org/notifications
https://cabotapp.com/
https://www.arachnys.com/
https://en.wikipedia.org/wiki/Know_your_customer
https://www.nagios.org/
https://graphiteapp.org/
https://jenkins.io/
https://www.arachnys.com/
https://github.com/PearsonEducation/StatsAgg
https://www.pearson.com/us/
https://grafana.com/
https://opensource.com/resources/what-is-kubernetes
https://github.com/Netflix/vizceral

3 OPEN SOURCE DISTRIBUTED TRACING TOOLS .

20 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

DISTRIBUTED TRACING SYSTEMS enable
tracking a re-

quest through a software system that is distributed across
multiple applications, services, and databases as well as
intermediaries like proxies. This allows for a deeper under-
standing of what is happening within a software system.
These systems produce graphical representations that show
how much time the request took on each step and lists each
known step.

A user reviewing this content can determine where the sys-
tem is experiencing latencies or blockages. Instead of testing
the system like a binary search tree when requests start failing,
operators and developers can see exactly where the issues
begin. This can also reveal where performance changes might
be occurring from deployment to deployment. It’s always bet-
ter to catch regressions automatically by alerting to the anom-
alous behavior rather than having your customers tell you.

How does this tracing thing work? Well, each request gets
a special ID that’s usually injected into the headers. This ID
uniquely identifies that transaction. This transaction is nor-
mally called a trace. The trace is the overall abstract idea
of the entire transaction. Each trace is made up of spans.
These spans are the actual work being performed, like a ser-
vice call or a database request. Each span also has a unique
ID. Spans can create subsequent spans called child spans,
and child spans can have multiple parents.

Once a transaction (or trace) has run its course, it can be
searched in a presentation layer. There are several tools in
this space that we’ll discuss later, but the picture below is
of Jaeger [1] from my Istio walkthrough [2]. It shows multi-
ple spans of a single trace. The power of this is immediately
clear as you can better understand the transaction’s story at
a glance.

Image by Dan Barker (Creative Commns BY SA 4.0)

This demo is using Istio’s built-in OpenTracing implemen-
tation, so I can get tracing without even modifying my appli-
cation. It also uses Jaeger, which is OpenTracing-compatible.
So what is OpenTracing? Let’s find out.

OpenTracing API
OpenTracing [3] is a spec that grew out of Zipkin [4] to pro-
vide cross-platform compatibility. It offers a vendor-neutral
API for adding tracing to applications and delivering that
data into distributed tracing systems. A library written for
the OpenTracing spec can be used with any system that is
OpenTracing compliant. Zipkin, Jaeger, and AppDash are
examples of open source tools that have adopted the open
standard, but even proprietary tools like Datadog and Insta-
na are adopting it. This is expected to continue as OpenTrac-
ing reaches ubiquitous status.

OpenCensus
Okay, we have OpenTracing, but what is this OpenCensus [5]
thing that keeps popping up in my searches? Is it a compet-
ing standard, something completely different, or something
complementary? That answer depends on who you ask. I
will do my best to explain the difference (as I understand it).

OpenCensus is a more holistic or all-inclusive approach.
OpenTracing is focused on establishing an open API and spec
and not on open implementations for each language and trac-
ing system. OpenCensus provides not only the specification
but also the language implementations and wire protocol. It
also goes beyond tracing by including additional metrics that
are normally outside the scope of distributed tracing systems.

OpenCensus allows viewing data on the host where the
application is running, but it also has a pluggable exporter
system for exporting data to central aggregators. The current
exporters produced by the OpenCensus team are Zipkin,
Prometheus, Jaeger, Stackdriver, Datadog, and SignalFx,
but anyone can create an exporter.

3 open source distributed
tracing tools

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.jaegertracing.io/
https://www.youtube.com/watch?v=T8BbeqZ0Rls
http://opentracing.io/
https://zipkin.io/
https://opencensus.io/

. 3 OPEN SOURCE DISTRIBUTED TRACING TOOLS

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 21

From my perspective, there’s a lot of overlap. One isn’t
necessarily better than the other, but it’s important to know
what each does and doesn’t do. OpenTracing is primarily a
spec with others doing the implementation and opinionation.
OpenCensus provides a holistic approach for the local com-
ponent with more opinionation but still requires other sys-
tems for remote aggregation.

Tool options

Zipkin
Zipkin was one of the first systems of this kind. It was developed
by Twitter based on the Google Dapper paper [6] about the in-
ternal system Google uses. Zipkin was written using Java, and
it can use Cassandra or ElasticSearch as scalable backends.
Most companies should be satisfied with one of those options.
The lowest supported Java version is Java 6. It also uses the
Thrift [7] binary communication protocol, which is popular in the
Twitter stack and is hosted as an Apache project.

The system consists of reporters (clients), collectors, a
query service, and a web UI. Zipkin is meant to be safe in
production by transmitting only a trace ID within the context
of a transaction to inform receivers that a trace is in pro-
cess. The data collected in each reporter is then transmitted
asynchronously to the collectors. The collectors store these
spans in the database, and the web UI presents this data to
the end user in a consumable format. The delivery of data
to the collectors can occur in three different methods: HTTP,
Kafka, and Scribe.

The Zipkin community [8] has also created Brave [9], a
Java client implementation compatible with Zipkin. It has no
dependencies, so it won’t drag your projects down or clutter
them with libraries that are incompatible with your corporate
standards. There are many other implementations, and Zipkin
is compatible with the OpenTracing standard, so these imple-
mentations should also work with other distributed tracing sys-
tems. The popular Spring framework has a component called
Spring Cloud Sleuth [10] that is compatible with Zipkin.

Jaeger
Jaeger [11] is a newer project from Uber Technologies that
the CNCF [12] has since adopted as an Incubating project.
It is written in Golang, so you don’t have to worry about hav-
ing dependencies installed on the host or any overhead of
interpreters or language virtual machines. Similar to Zipkin,
Jaeger also supports Cassandra and ElasticSearch as scal-
able storage backends. Jaeger is also fully compatible with
the OpenTracing standard.

Jaeger’s architecture is similar to Zipkin, with clients (report-
ers), collectors, a query service, and a web UI, but it also has
an agent on each host that locally aggregates the data. The
agent receives data over a UDP connection, which it batches
and sends to a collector. The collector receives that data in the
form of the Thrift [13] protocol and stores that data in Cassandra

or ElasticSearch. The query service can access the data store
directly and provide that information to the web UI.

By default, a user won’t get all the traces from the Jaeger
clients. The system samples 0.1% (1 in 1,000) of traces that
pass through each client. Keeping and transmitting all traces
would be a bit overwhelming to most systems. However, this
can be increased or decreased by configuring the agents,
which the client consults with for its configuration. This sam-
pling isn’t completely random, though, and it’s getting better.
Jaeger uses probabilistic sampling, which tries to make an
educated guess at whether a new trace should be sampled
or not. Adaptive sampling is on its roadmap [14], which will
improve the sampling algorithm by adding additional context
for making decisions.

AppDash
AppDash [15] is a distributed tracing system written in Gol-
ang, like Jaeger. It was created by Sourcegraph [16] based on
Google’s Dapper and Twitter’s Zipkin. Similar to Jaeger and
Zipkin, AppDash supports the OpenTracing standard; this was
a later addition and requires a component that is different from
the default component. This adds risk and complexity.

At a high level, AppDash’s architecture consists mostly of
three components: a client, a local collector, and a remote
collector. There’s not a lot of documentation, so this descrip-
tion comes from testing the system and reviewing the code.
The client in AppDash gets added to your code. AppDash
provides Python, Golang, and Ruby implementations, but
OpenTracing libraries can be used with AppDash’s Open-
Tracing implementation. The client collects the spans and
sends them to the local collector. The local collector then
sends the data to a centralized AppDash server running its
own local collector, which is the remote collector for all other
nodes in the system.

Links
[1] https://www.jaegertracing.io/
[2] https://www.youtube.com/watch?v=T8BbeqZ0Rls
[3] http://opentracing.io/
[4] https://zipkin.io/
[5] https://opencensus.io/
[6] https://static.googleusercontent.com/media/research.

google.com/en//archive/papers/dapper-2010-1.pdf
[7] https://thrift.apache.org/
[8] https://zipkin.io/pages/community.html
[9] https://github.com/openzipkin/brave
[10] https://cloud.spring.io/spring-cloud-sleuth/
[11] https://www.jaegertracing.io/
[12] https://www.cncf.io/
[13] https://en.wikipedia.org/wiki/Apache_Thrift
[14] https://www.jaegertracing.io/docs/roadmap/#adaptive-

sampling
[15] https://github.com/sourcegraph/appdash
[16] https://about.sourcegraph.com/

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://thrift.apache.org/
https://zipkin.io/pages/community.html
https://github.com/openzipkin/brave
https://cloud.spring.io/spring-cloud-sleuth/
https://www.jaegertracing.io/
https://www.cncf.io/
https://en.wikipedia.org/wiki/Apache_Thrift
https://www.jaegertracing.io/docs/roadmap/#adaptive-sampling
https://github.com/sourcegraph/appdash
https://about.sourcegraph.com/
https://www.jaegertracing.io/
https://www.youtube.com/watch?v=T8BbeqZ0Rls
http://opentracing.io/
https://zipkin.io/
https://opencensus.io/
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://thrift.apache.org/
https://zipkin.io/pages/community.html
https://github.com/openzipkin/brave
https://cloud.spring.io/spring-cloud-sleuth/
https://www.jaegertracing.io/
https://www.cncf.io/
https://en.wikipedia.org/wiki/Apache_Thrift
https://www.jaegertracing.io/docs/roadmap/#adaptive-sampling
https://www.jaegertracing.io/docs/roadmap/#adaptive-sampling
https://github.com/sourcegraph/appdash
https://about.sourcegraph.com/

22 THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM

GET INVOLVED | ADDITIONAL RESOURCES .

GET INVOLVED

ADDITIONAL RESOURCES

If you find these articles useful, get involved! Your feedback helps improve the status
quo for all things DevOps.
Contribute to the Opensource.com DevOps resource collection, and join the team of
DevOps practitioners and enthusiasts who want to share the open source stories
happening in the world of IT.
The Open Source DevOps team is looking for writers, curators, and others who can help
us explore the intersection of open source and DevOps. We’re especially interested in
stories on the following topics:

• DevOps practical how to’s
• DevOps and open source
• DevOps and talent
• DevOps and culture
• DevSecOps/rugged software

Learn more about the Opensource.com DevOps team: https://opensource.com/devops-team

The ultimate DevOps hiring guide
This free download provides advice, tactics, and information about the state of DevOps
hiring for both job seekers and hiring managers.
Download it now: The ultimate DevOps hiring guide

The Open Organization Guide to IT Culture Change
In The Open Organization Guide to IT Culture Change, more than 25 contributors from
open communities, companies, and projects offer hard-won lessons and practical ad-
vice on how to create an open IT department that can deliver better, faster results and
unparalleled business value.
Download it now: The Open Organization Guide to IT Culture Change

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.Opensource.com
https://opensource.com/devops-team
https://www.Opensource.com
https://opensource.com/devops-team
https://opensource.com/downloads/devops-hiring-guide
https://opensource.com/open-organization/resources/culture-change
https://opensource.com/open-organization/resources/culture-change

. WRITE FOR US | KEEP IN TOUCH

THE OPEN SOURCE GUIDE TO DEVOPS MONITORING TOOLS ... CC BY-SA 4.0 ... OPENSOURCE.COM 23

Would you like to write for Opensource.com? Our editorial calendar includes upcoming themes,
community columns, and topic suggestions: https://opensource.com/calendar
Learn more about writing for Opensource.com at: https://opensource.com/writers
We're always looking for open source-related articles on the following topics:

Big data: Open source big data tools, stories, communities, and news.
Command-line tips: Tricks and tips for the Linux command-line.
Containers and Kubernetes: Getting started with containers, best practices,
security, news, projects, and case studies.
Education: Open source projects, tools, solutions, and resources for educators,
students, and the classroom.
Geek culture: Open source-related geek culture stories.
Hardware: Open source hardware projects, maker culture, new products, howtos,
and tutorials.
Machine learning and AI: Open source tools, programs, projects and howtos for
machine learning and artificial intelligence.
Programming: Share your favorite scripts, tips for getting started, tricks for
developers, tutorials, and tell us about your favorite programming languages and
communities.
Security: Tips and tricks for securing your systems, best practices, checklists,
tutorials and tools, case studies, and security-related project updates.

WRITE FOR US

Keep in touch!
Sign up to receive roundups of our best articles,

giveaway alerts, and community announcements.

Visit opensource.com/email-newsletter to subscribe.

https://creativecommons.org/licenses/by-sa/4.0/
http://www.opensource.com
https://www.Opensource.com
https://opensource.com/calendar
https://www.Opensource.com
https://opensource.com/writers
http://opensource.com/email-newsletter

	001-002_Cover
	003-005_Front_Matter
	006-007_Intro
	008-011_4_OS_Monitoring_Tools
	012-014_Log_Aggregation
	015-019_Alerting_Visualization
	020-021_Tracing
	022-022_GetInvolved
	023-023_Write4Us

