
Chaos Engineering
for Kubernetes
by Jessica Cherry

We are Opensource.com

Opensource.com is a community website publishing stories about creating, adopting, and
sharing open source solutions. Visit Opensource.com to learn more about how the open
source way is improving technologies, education, business, government, health, law,
entertainment, humanitarian efforts, and more.

Do you have an open source story to tell? Submit a story idea at opensource.com/story

Email us at open@opensource.com

http://opensource.com/story
mailto://open@opensource.com
./https:%2F%2Fwww.redhat.com%3Fsc_cid=7013a000003BkHQAA0

Table of Contents

Get started with Kubernetes using chaos engineering...4

Start monitoring your Kubernetes cluster with Prometheus and Grafana.....................................6

Test Kubernetes cluster failures and experiments in your terminal..21

Test your Kubernetes experiments with an open source web interface.......................................30

Test arbitrary pod failures on Kubernetes with kube-monkey...40

Play Doom on Kubernetes...48

What happens when you terminate Kubernetes containers on purpose?....................................53

Appendix: How to make a Helm chart in 10 minutes...63

Jessica Cherry

Jessica Cherry is a tech nomad, working on just about
anything she can find. She’s an avid evangelist of silo-
prevention in the IT space, and the importance of
information sharing across all teams. She’s a believer in
educating all, and in open source development.

Jessica Cherry calls herself a lover of all things tech, and it
shows in the breadth of her articles. She’s written about the
latest developments in Kubernetes, CI/CD and Jenkins,
Open Street Maps, as well as the “mundane” things we all
need at one time or another, like filing taxes, video
conferencing, and wedding planning using open source.

Creative Commons Attribution Share-alike 4.0 3

Get started with Kubernetes using
chaos engineering

Chaos engineering is part science, part planning, and part experiments. It's the discipline of
experimenting on a system to build confidence in the system's capability to withstand
turbulent conditions in production.

This introductory article explains the basics of how chaos engineering works.

How do I get started with chaos engineering?
In my experience, the best way to start chaos engineering is by taking an incident that has
happened before in production and using it as an experiment. Use your past data, make a plan
to break your system in a similar way, create a repair strategy, and confirm the outcome turns
out exactly how you want. If your plan fails, you have a new way to experiment and move
forward toward a new way to handle issues quickly.

Best of all, you can document everything as you go, which means, over time, your entire
system will be fully documented so that anyone can be on call without too many escalations
and everyone can have a nice break on weekends.

What do you do in chaos engineering?
Chaos engineering has some science behind how these experiments work. I've documented
some of the steps:

1. Define a steady state: Use a monitoring tool to gather data about what your system
looks like functionally when there are no problems or incidents.

2. Come up with a hypothesis or use a previous incident: Now that you have defined
a steady state, come up with a hypothesis about what would happen (or has happened)
during an incident or outage. Use this hypothesis to generate a series of theories about

Creative Commons Attribution Share-alike 4.0 4

what could happen and how to resolve the problems. Then you can start a plan to
purposely cause the issue.

3. Introduce the problem: Use that plan to break your system and begin real-world
testing. Gather your broken metrics' states, use your planned fix, and keep track of how
long it takes before you reach a resolution. Make sure you document everything for
future outages.

4. Try to disprove your own hypothesis: The best part of experimenting is trying to
disprove what you think or plan. You want to create a different state, see how far you
can take it, and generate a different steady state in the system.

Make sure to create a control system in a steady state before you generate the broken
variables in another system. This will make it easier to spot the differences in various steady
states before, during, and after your experiment.

What do I need for chaos engineering?
The best tools for beginning chaos engineering are:

• Good documentation practices
• Monitoring system to capture your system in a steady and a non-steady state

• Grafana
• Prometheus

• Chaos engineering tools
• Chaos mesh
• Litmus

• A hypothesis
• A plan

Go forth and destroy
Now that you have the basics in hand, it's time to go forth and destroy your system safely. I
would plan to start causing chaos four times a year and work toward monthly destructions.

Chaos engineering is good practice and a great way to keep your internal documentation up
to date. Also, new upgrades or application deployments will be smoother over time, and your
daily life will be easier with Kubernetes administration.

Creative Commons Attribution Share-alike 4.0 5

Start monitoring your Kubernetes
cluster with Prometheus and
Grafana

In my introductory, one of the main things I covered was the importance of getting the steady
state of your working Kubernetes cluster. Before you can start causing chaos, you need to
know what the cluster looks like in a steady state.

This article demonstrates how to get those metrics using Prometheus and Grafana. This
walkthrough was written on Pop!_OS 20.04, Helm 3, Minikube 1.14.2, and Kubernetes 1.19.

Configure Minikube
Install Minikube in whatever way makes sense for your environment. If you have enough
resources, I recommend giving your virtual machine a bit more than the default memory and
CPU power:

$ minikube config set memory 8192
 These changes take effect upon a minikube delete and then a minikube start❗

$ minikube config set cpus 6
 These changes take effect upon a minikube delete and then a minikube start❗

Then start and check your system's status:

$ minikube start
minikube v1.14.2 on Debian bullseye/sid
minikube 1.19.0 is available! http://github.com/kubernetes/minikube
To disable this notice: 'minikube config set WantUpdateNotification false'
Using the docker driver based on user configuration
Starting control plane node minikube in cluster minikube
Verifying Kubernetes components...
Done! kubectl is now configured to use "minikube" by default
$ minikube status

Creative Commons Attribution Share-alike 4.0 6

https://opensource.com/article/19/11/introduction-monitoring-prometheus
https://minikube.sigs.k8s.io/docs/start/
htpp://grafana.com

minikube
type: Control Plane
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured

Install Prometheus
Once the cluster is set up, start your installations. Install Prometheus. First, add the repository
in Helm:

$ helm repo add prometheus-community https://prometheus-community.github.io/helm-
charts
"prometheus-community" has been added to your repositories

Then install your Prometheus Helm chart. You should see:

$ helm install prometheus prometheus-community/prometheus
NAME: prometheus
LAST DEPLOYED: Sun May 9 11:37:19 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The Prometheus server can be accessed via port 80 on the following DNS name from
within your cluster:
prometheus-server.default.svc.cluster.local

Get the Prometheus server URL by running these commands in the same shell:

$ export POD_NAME=$(kubectl get pods --namespace default \
-l "app=prometheus,component=server" -o jsonpath="{.items[0].metadata.name}")
$ kubectl --namespace default port-forward $POD_NAME 9090

You can access the Prometheus Alertmanager on port 80 on this DNS name from within your
cluster:

prometheus-alertmanager.default.svc.cluster.local

Get the Alertmanager URL by running these commands in the same shell:

Creative Commons Attribution Share-alike 4.0 7

http://prometheus.io/

$ export POD_NAME=$(kubectl get pods --namespace default \
-l "app=prometheus,component=alertmanager" \
-o jsonpath="{.items[0].metadata.name}")
$ kubectl --namespace default port-forward $POD_NAME 9093
WARNING: Pod Security Policy has been moved to a global property.
You can access the Prometheus PushGateway via port 9091 on this DNS name from
within your cluster: prometheus-pushgateway.default.svc.cluster.local

Get the PushGateway URL by running these commands in the same shell:

$ export POD_NAME=$(kubectl get pods --namespace default \
-l "app=prometheus,component=pushgateway" \
-o jsonpath="{.items[0].metadata.name}")

$ kubectl --namespace default port-forward $POD_NAME 9091
For more information on running Prometheus, visit https://prometheus.io

Check to confirm your pods are running:

$ kubectl get pods -n default
NAME READY STATUS RESTARTS AGE
prometheus-alertmanager-ccf 2/2 Running 0 3m22s
prometheus-[...]metrics-685b 1/1 Running 0 3m22s
prometheus-node-exporter-mfc 1/1 Running 0 3m22s
prometheus-pushgateway-74cb6 1/1 Running 0 3m22s
prometheus-server-d9f[...]jw 2/2 Running 0 3m22s

Next, expose your port on the Prometheus server pod so that you can see the Prometheus
web interface. To do this, you need the service name and port. You also need to come up with
a name to open the service using the Minikube service command.

Get the service name for prometheus-server:

$ kubectl get svc -n default

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP
prom[...]alert ClusterIP 10.106.68.12 <none> 80/TCP
pr[...]metrics ClusterIP 10.104.167.239 <none> 8080/TCP
pr[...]xporter ClusterIP None <none> 9100/TCP
pr[...]gateway ClusterIP 10.99.90.233 <none> 9091/TCP
pr[...]-server ClusterIP 10.103.195.104 <none> 9090/TCP

Expose the service as type Node-port. Provide a target port of 9090 and a name you want
to call the server. The node port is the server listening port. This is an extract of the Helm
chart:

Creative Commons Attribution Share-alike 4.0 8

Port for Prometheus Service to listen on
port: 9090

The command is:

$ kubectl expose service prometheus-server --type=NodePort \
--target-port=9090 --name=prom-server
service/prom-server exposed

Next, you need Minikube to open the service and browser:

$ minikube service prom-server
| NAMESPACE | NAME | TARGET PORT | URL
| default | prom-server | 80 | http://192.168.49.2:32169

Opening service default/prom-server in default browser...

Your browser opens, and displays the Prometheus service.

(Jess Cherry, CC BY-SA 4.0)

Congratulations! You now have Prometheus installed on your cluster.

Install Grafana
Next, install Grafana and configure it to work with Prometheus. Follow the steps below to
expose a service to configure Grafana and collect data from Prometheus to gather your
steady state.

Start with getting your Helm chart:

Creative Commons Attribution Share-alike 4.0 9

https://creativecommons.org/licenses/by-sa/4.0/

$ helm repo add grafana https://grafana.github.io/helm-charts

"grafana" has been added to your repositories

Search for your chart:

$ helm search repo grafana

NAME CHART VERSION DESCRIPTION
bitnami/grafana 5.2.11 7.5.5 Grafana is an open[...]
bitnami/grafana-oper 0.6.5 3.10.0 Operator for Grafa[...]
stable/grafana 5.5.7 7.1.1 DEPRECATED

Since stable/grafana is depreciated, install bitnami/grafana.

Install the chart

$ helm install grafana bitnami/grafana
NAME: grafana
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES: Please be patient while the chart is being deployed.

Get the application URL:

$ echo "Browse to http://127.0.0.1:8080"
kubectl port-forward svc/grafana 8080:3000 &

Get the admin credentials:

$ echo "User: admin"
echo "Password: $(kubectl get secret grafana-admin --namespace default \
-o jsonpath="{.data.GF_SECURITY_ADMIN_PASSWORD}" | base64 –decode)"

As you can see in the Helm installation output, the target port for Grafana is 3000, so you will
use that port for exposing the service to see Grafana's web frontend. Before exposing the
service, confirm that your services are running:

$ kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS

Creative Commons Attribution Share-alike 4.0 10

default grafana-6b84bbcd8f-xt6vd 1/1 Running 0

Expose the service:

$ kubectl expose service grafana --type=NodePort --target-port=3000 --
name=grafana-server

service/grafana-server exposed

Enable the service to open a browser with a Minikube service:

$ minikube service grafana-server

| NAMESPACE | NAME | TARGET PORT | URL
| default | grafana-server | 3000 | http://192.168.49.2:30549

Opening service default/grafana-server in default browser...

You will see the welcome screen where you can log in.

(Jess Cherry, CC BY-SA 4.0)

Set up credentials to log into Grafana using kubectl. The commands appeared in the
installation's output; here are the commands in use:

$ echo "User: admin"

Creative Commons Attribution Share-alike 4.0 11

https://creativecommons.org/licenses/by-sa/4.0/

User: admin

$ echo "Password: $(kubectl get secret grafana-admin --namespace default \
-o jsonpath="{.data.GF_SECURITY_ADMIN_PASSWORD}" | base64 --decode)"

Password: G6U5VeAejt

Log in with your new credentials, and you will see the Grafana dashboard.

(Jess Cherry, CC BY-SA 4.0)

Congratulations! You now have a working Grafana installation in your Minikube cluster with the
ability to log in. The next step is to configure Grafana to work with Prometheus to gather data
and show your steady state.

Configure Grafana with Prometheus
Now that you can log in to your Grafana instance, you need to set up the data collection and
dashboard. Since this is an entirely web-based configuration, I will go through the setup using
screenshots. Start by adding your Prometheus data collection. Click the gear icon on the
left-hand side of the display to open the Configuration settings, then select Data Source.

Creative Commons Attribution Share-alike 4.0 12

https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

On the next screen, click Add data source.

(Jess Cherry, CC BY-SA 4.0)

Select Prometheus.

Creative Commons Attribution Share-alike 4.0 13

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

Because you configured your Prometheus instance to be exposed on port 80, use the service
name prometheus-server and the server port 80.

(Jess Cherry, CC BY-SA 4.0)

Creative Commons Attribution Share-alike 4.0 14

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Save and test your new data source by scrolling to the bottom of the screen and clicking Save
and Test. You should see a green banner that says Data source is working.

(Jess Cherry, CC BY-SA 4.0)

Return to the top of the page and click Dashboards.

Import all three dashboard options.

Creative Commons Attribution Share-alike 4.0 15

https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

Click the magnifying glass icon on the left-hand side to confirm all three dashboards have
been imported.

(Jess Cherry, CC BY-SA 4.0)

Creative Commons Attribution Share-alike 4.0 16

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Now that everything is configured, click Prometheus 2.0 Stats, and you should see
something similar to this.

(Jess Cherry, CC BY-SA 4.0)

Congratulations! You have a set up basic data collection from Prometheus about your cluster.

Import more monitoring dashboards
You can import additional detailed dashboards from Grafana Labs' community dashboards
collection. I picked two of my favorites, Dash-minikube and Kubernetes Cluster Monitoring,
for this quick walkthrough.

To import a dashboard, you need its ID from the dashboards collection. First, click the plus (+)
sign on the left-hand side to create a dashboard, then click Import in the dropdown list, and
enter the ID. For Dash-minikube, it's ID 10219.

Creative Commons Attribution Share-alike 4.0 17

https://grafana.com/grafana/dashboards/2115
https://grafana.com/grafana/dashboards/10219
https://grafana.com/grafana/dashboards
https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

(Jess Cherry, CC BY-SA 4.0)

Click Load, and enter the data source on the next screen. Since this uses Prometheus, enter
your Prometheus data source.

Creative Commons Attribution Share-alike 4.0 18

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

Click Import, and the new dashboard appears:

(Jess Cherry, CC BY-SA 4.0)

Creative Commons Attribution Share-alike 4.0 19

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Now you have a new dashboard to keep track of your Minikube stats. If you follow the same
steps using Kubernetes Cluster Monitoring (ID 2115), you will see a more verbose monitoring
dashboard.

(Jess Cherry, CC BY-SA 4.0)

Now you can keep track of your steady state with Grafana and Prometheus data collections
and visuals.

Final thoughts
With these open source tools, you can collect your cluster's steady state and maintain a good
pulse on it. This is important in chaos engineering because it allows you to check everything in
a destructive, unstable state and use that data to test your hypothesis about what could
happen to its state during an outage.

Creative Commons Attribution Share-alike 4.0 20

https://creativecommons.org/licenses/by-sa/4.0/

Test Kubernetes cluster failures
and experiments in your terminal

Do you know how your system will respond to an arbitrary failure? Will your application fail?
Will anything survive after a loss? If you're not sure, it's time to see if your system passes the
Litmus test, a detailed way to cause chaos at random with many experiments.

In the first article in this series, I explained what chaos engineering is, and in the second
article, I demonstrated how to get your system's steady state so that you can compare it
against a chaos state. This third article shows you how to install and use Litmus to test
arbitrary failures and experiments in your Kubernetes cluster. In this walkthrough, I use Pop!
_OS 20.04, Helm 3, Minikube 1.14.2, and Kubernetes 1.19.

Configure Minikube
Install Minikube in whatever way makes sense for your environment. If you have enough
resources, I recommend giving your virtual machine a bit more than the default memory and
CPU power:

$ minikube config set memory 8192
 These changes take effect upon a minikube delete and then a minikube start❗

$ minikube config set cpus 6
 These changes take effect upon a minikube delete and then a minikube start❗

Then start and check your system's status:

$ minikube start
minikube v1.14.2 on Debian bullseye/sid
minikube 1.19.0 is available! http://github.com/kubernetes/minikube
To disable this notice: 'minikube config set WantUpdateNotification false'
Using the docker driver based on user configuration
Starting control plane node minikube in cluster minikube
Verifying Kubernetes components...

Creative Commons Attribution Share-alike 4.0 21

https://minikube.sigs.k8s.io/docs/start/
https://github.com/litmuschaos/litmus

Done! kubectl is now configured to use "minikube" by default
$ minikube status
minikube
type: Control Plane
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured

Install Litmus
As outlined on Litmus' homepage, the steps to install Litmus are: add your repo to Helm,
create your Litmus namespace, then install your chart:

$ helm repo add litmuschaos https://litmuschaos.github.io/litmus-helm/
"litmuschaos" has been added to your repositories
$ kubectl create ns litmus
namespace/litmus created
$ helm install chaos litmuschaos/litmus --namespace=litmus
NAME: chaos
LAST DEPLOYED: Sun May 9 17:05:36 2021
NAMESPACE: litmus
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:

Verify the installation
You can run the following commands if you want to verify all the desired components are
installed correctly.

Verify that api-resources for chaos are available:

kubectl api-resources | grep litmus
chaosengines litmuschaos.io true ChaosEngine
chaosexperiments litmuschaos.io true ChaosExperiment
chaosresults litmuschaos.io true ChaosResult

Creative Commons Attribution Share-alike 4.0 22

https://litmuschaos.io/

Verify that the Litmus chaos operator deployment is running successfully:

kubectl get pods -n litmus
NAME READY STATUS RESTARTS
litmus-7d998b6568-nnlcd 1/1 Running 0

Run chaos experiments
With this out of the way, you are good to go! Refer to Litmus' chaos experiment
documentation to start executing your first experiment.

To confirm your installation is working, check that the pod is up and running correctly:

$ kubectl get pods -n litmus
NAME READY STATUS RESTARTS
litmus-7d6f994d88-2g7wn 1/1 Running 0

Confirm that the Custom Resource Definitions (CRDs) are also installed correctly:

$ kubectl get crds | grep chaos
chaosengines.litmuschaos.io 2021-05-09T21:05:33Z
chaosexperiments.litmuschaos.io 2021-05-09T21:05:33Z
chaosresults.litmuschaos.io 2021-05-09T21:05:33Z

Finally, confirm your API resources are also installed:

$ kubectl api-resources | grep chaos
chaosengines litmuschaos.io true ChaosEngine
chaosexperiments litmuschaos.io true ChaosExperiment
chaosresults litmuschaos.io true ChaosResult

That's what I call easy installation and confirmation. The next step is setting up deployments
for chaos.

Prep for destruction
To test for chaos, you need something to test against. Add a new namespace:

$ kubectl create namespace more-apps
namespace/more-apps created

Then add a deployment to the new namespace:

Creative Commons Attribution Share-alike 4.0 23

https://docs.litmuschaos.io/
https://docs.litmuschaos.io/

$ kubectl create deployment ghost --namespace more-apps \
--image=ghost:3.11.0-alpine

deployment.apps/ghost created

Finally, scale your deployment up so that you have more than one pod in your deployment to
test against:

$ kubectl scale deployment/ghost \
--namespace more-apps --replicas=4

deployment.apps/ghost scaled

For Litmus to cause chaos, you need to add an annotation to your deployment to mark it
ready for chaos. Currently, annotations are available for deployments, StatefulSets, and
DaemonSets. Add the annotation chaos=true to your deployment:

$ kubectl annotate deploy/ghost \
litmuschaos.io/chaos="true" -n more-apps

deployment.apps/ghost annotated

Make sure the experiments you will install have the correct permissions to work in the "more-
apps" namespace.

Make a new rbac.yaml file for the prepper bindings and permissions:

$ touch rbac.yaml

Then add permissions for the generic testing by copying and pasting the code below into your
rbac.yaml file. These are just basic, minimal permissions to kill pods in your namespace and
give Litmus permissions to delete a pod for a namespace you provide:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: pod-delete-sa
 namespace: more-apps
 labels:
 name: pod-delete-sa

apiVersion: rbac.authorization.k8s.io/v1
kind: Role

Creative Commons Attribution Share-alike 4.0 24

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/

metadata:
 name: pod-delete-sa
 namespace: more-apps
 labels:
 name: pod-delete-sa
rules:
- apiGroups: [""]
 resources: ["pods","events"]
 verbs: ["create","list","get","patch","update","delete","deletecollection"]
- apiGroups: [""]
 resources: ["pods/exec","pods/log","replicationcontrollers"]
 verbs: ["create","list","get"]
- apiGroups: ["batch"]
 resources: ["jobs"]
 verbs: ["create","list","get","delete","deletecollection"]
- apiGroups: ["apps"]
 resources: ["deployments","statefulsets","daemonsets","replicasets"]
 verbs: ["list","get"]
- apiGroups: ["apps.openshift.io"]
 resources: ["deploymentconfigs"]
 verbs: ["list","get"]
- apiGroups: ["argoproj.io"]
 resources: ["rollouts"]
 verbs: ["list","get"]
- apiGroups: ["litmuschaos.io"]
 resources: ["chaosengines","chaosexperiments","chaosresults"]
 verbs: ["create","list","get","patch","update"]

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: pod-delete-sa
 namespace: more-apps
 labels:
 name: pod-delete-sa
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: pod-delete-sa
subjects:
- kind: ServiceAccount
 name: pod-delete-sa
 namespace: more-apps

Apply the rbac.yaml file:

$ kubectl apply -f rbac.yaml
serviceaccount/pod-delete-sa created

Creative Commons Attribution Share-alike 4.0 25

role.rbac.authorization.k8s.io/pod-delete-sa created
rolebinding.rbac.authorization.k8s.io/pod-delete-sa created

The next step is to prepare your chaos engine to delete pods. The chaos engine will connect
the experiment you need to your application instance by creating a chaosengine.yaml file
and copying the information below into the .yaml file. This will connect your experiment to
your namespace and the service account with the role bindings you created above.

This chaos engine file only specifies the pod to delete during chaos testing:

apiVersion: litmuschaos.io/v1alpha1
kind: ChaosEngine
metadata:
 name: moreapps-chaos
 namespace: more-apps
spec:
 appinfo:
 appns: 'more-apps'
 applabel: 'app=ghost'
 appkind: 'deployment'
 # It can be true/false
 annotationCheck: 'true'
 # It can be active/stop
 engineState: 'active'
 #ex. values: ns1:name=percona,ns2:run=more-apps
 auxiliaryAppInfo: ''
 chaosServiceAccount: pod-delete-sa
 # It can be delete/retain
 jobCleanUpPolicy: 'delete'
 experiments:
 - name: pod-delete
 spec:
 components:
 env:
 # set chaos duration (in sec) as desired
 - name: TOTAL_CHAOS_DURATION
 value: '30'
 # set chaos interval (in sec) as desired
 - name: CHAOS_INTERVAL
 value: '10'
 # pod failures without '--force' & default
terminationGracePeriodSeconds
 - name: FORCE
 value: 'false'

Don't apply this file until you install the experiments in the next section.

Creative Commons Attribution Share-alike 4.0 26

Add new experiments for causing chaos
Now that you have an entirely new environment with deployments, roles, and the chaos
engine to test against, you need some experiments to run. Since Litmus has a large
community, you can find some great experiments in the Chaos Hub.

In this walkthrough, I'll use the generic experiment of killing a pod.

Run a kubectl command to install the generic experiments into your cluster. Install this in your
more-apps namespace; you will see the tests created when you run it:

$ kubectl apply -n more-apps -f \
https://hub.litmuschaos.io/api/chaos/1.13.3?file=charts/generic/experiments.yaml
chaosexperiment.litmuschaos.io/pod-network-duplication created
chaosexperiment.litmuschaos.io/node-cpu-hog created
chaosexperiment.litmuschaos.io/node-drain created
chaosexperiment.litmuschaos.io/docker-service-kill created
chaosexperiment.litmuschaos.io/k8-pod-delete created
chaosexperiment.litmuschaos.io/pod-delete created
chaosexperiment.litmuschaos.io/node-poweroff created
chaosexperiment.litmuschaos.io/k8-service-kill created
[...]
chaosexperiment.litmuschaos.io/pod-memory-hog created

Verify the experiments installed correctly:

$ kubectl get chaosexperiments -n more-apps
NAME AGE
container-kill 72s
disk-fill 72s
disk-loss 72s
docker-service-kill 72s
k8-pod-delete 72s
k8-service-kill 72s
kubelet-service-kill 72s
node-cpu-hog 72s
node-drain 72s
node-io-stress 72s
node-memory-hog 72s
[...]
pod-network-loss 72s

Creative Commons Attribution Share-alike 4.0 27

https://docs.litmuschaos.io/docs/pod-delete/
https://hub.litmuschaos.io/

Run the experiments
Now that everything is installed and configured, use your chaosengine.yaml file to run the
pod-deletion experiment you defined. Apply your chaos engine file:

$ kubectl apply -f chaosengine.yaml
chaosengine.litmuschaos.io/more-apps-chaos created

Confirm the engine started by getting all the pods in your namespace; you should see pod-
delete being created:

$ kubectl get pods -n more-apps
NAME READY STATUS RESTARTS
ghost-5bdd4cdcc4-blmtl 1/1 Running 0
ghost-5bdd4cdcc4-z2lnt 1/1 Running 0
ghost-5bdd4cdcc4-zlcc9 1/1 Running 0
ghost-5bdd4cdcc4-zrs8f 1/1 Running 0
moreapps-chaos-runner 1/1 Running 0
pod-delete-e443qx-lxzfx 0/1 ContainerCreating 0

Next, you need to be able to observe your experiments using Litmus. The following command
uses the ChaosResult CRD and provides a large amount of output:

$ kubectl describe chaosresult moreapps-chaos-pod-delete -n more-apps
Name: moreapps-chaos-pod-delete
Namespace: more-apps
Labels: app.kubernetes.io/component=experiment-job
 app.kubernetes.io/part-of=litmus
 app.kubernetes.io/version=1.13.3
 chaosUID=a6c9ab7e-ff07-4703-abe4-43e03b77bd72
 controller-uid=601b7330-c6f3-4d9b-90cb-2c761ac0567a
 job-name=pod-delete-e443qx
 name=moreapps-chaos-pod-delete
[...]
Spec:
 Engine: moreapps-chaos
 Experiment: pod-delete
Status:
 Experiment Status:
 Fail Step: N/A
 Phase: Completed
 Probe Success Percentage: 100
 Verdict: Pass
 History:
 Failed Runs: 0
 Passed Runs: 1

Creative Commons Attribution Share-alike 4.0 28

 Stopped Runs: 0
Events:
 Type Reason From Message
 ---- ------ ---- -------
 Normal Pass pod-delete-e43qx experiment: pod-delete, Result: Pass

You can see the pass or fail output from your testing as you run the chaos engine definitions.

Congratulations on your first (and hopefully not last) chaos engineering test! Now you have a
powerful tool to use and help your environment grow.

Final thoughts
You might be thinking, "I can't run this manually every time I want to run chaos. How far can I
take this, and how can I set it up for the long term?"

Litmus' best part (aside from the Chaos Hub) is its scheduler function. You can use it to
define times and dates, repetitions or sporadic, to run experiments. This is a great tool for
detailed admins who have been working with Kubernetes for a while and are ready to create
some chaos. I suggest staying up to date on Litmus and how to use this tool for regular chaos
engineering. Happy pod hunting!

Creative Commons Attribution Share-alike 4.0 29

https://docs.litmuschaos.io/docs/scheduling/

Test your Kubernetes experiments
with an open source web interface

Have you wanted to cause chaos to test your systems but prefer to use visual tools rather
than the terminal? Well, this article is for you, my friend. So far, I’ve explained what chaos
engineering is; in the second article, I demonstrated how to get your system's steady state so
that you can compare it against a chaos state; and in the third, I showed how to use Litmus to
test arbitrary failures and experiments in your Kubernetes cluster.

In this article, I introduces you to Chaos Mesh, an open source chaos orchestrator with a web
user interface (UI) that anyone can use. It allows you to create experiments and display
statistics in a web UI for presentations or visual storytelling. The Cloud Native Computing
Foundation hosts the Chaos Mesh project, which means it is a good choice for Kubernetes. So
let's get started! In this walkthrough, I use Pop!_OS 20.04, Helm 3, Minikube 1.14.2, and
Kubernetes 1.19.

Configure Minikube
If you haven’t already done so, i nstall Minikube in whatever way makes sense for your
environment. If you have enough resources, I recommend giving your virtual machine a bit
more than the default memory and CPU power:

$ minikube config set memory 8192
 These changes take effect upon a minikube delete and then a minikube start❗

$ minikube config set cpus 6
 These changes take effect upon a minikube delete and then a minikube start❗

Then start and check your system's status:

$ minikube start
minikube v1.14.2 on Debian bullseye/sid
minikube 1.19.0 is available! http://github.com/kubernetes/minikube

Creative Commons Attribution Share-alike 4.0 30

https://minikube.sigs.k8s.io/docs/start/
https://www.cncf.io/
https://www.cncf.io/
https://chaos-mesh.org/

To disable this notice: 'minikube config set WantUpdateNotification false'
Using the docker driver based on user configuration
Starting control plane node minikube in cluster minikube
Verifying Kubernetes components...
Done! kubectl is now configured to use "minikube" by default
$ minikube status
minikube
type: Control Plane
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured

Install Chaos Mesh
Start installing Chaos Mesh by adding the repository to Helm:

$ helm repo add chaos-mesh https://charts.chaos-mesh.org

"chaos-mesh" has been added to your repositories

Then search for your Helm chart:

$ helm search repo chaos-mesh

NAME CHART APP DESCRIPTION
chaos-mesh/chaos-mesh v0.5.0 v1.2.0 Chaos Mesh® is a cloud-native [...]

Once you find your chart, you can begin the installation steps, starting with creating a chaos-
testing namespace:

$ kubectl create ns chaos-testing
namespace/chaos-testing created

Next, install your Chaos Mesh chart in this namespace and name it chaos-mesh:

$ helm install chaos-mesh chaos-mesh/chaos-mesh \
--namespace=chaos-testing
NAME: chaos-mesh
LAST DEPLOYED: Mon May 10 10:08:52 2021
NAMESPACE: chaos-testing
STATUS: deployed
REVISION: 1
TEST SUITE: None

Creative Commons Attribution Share-alike 4.0 31

NOTES: Make sure chaos-mesh components are running
$ kubectl get pods --namespace chaos-testing \
-l app.kubernetes.io/instance=chaos-mesh

As the output instructs, check that the Chaos Mesh components are running:

$ kubectl get pods --namespace chaos-testing \
-l app.kubernetes.io/instance=chaos-mesh

NAME READY STATUS RESTARTS
chaos-controller-manager-bfdcb99 1/1 Running 0
chaos-daemon-4mjq2 1/1 Running 0
chaos-dashboard-865b778d79-729xw 1/1 Running 0

Now that everything is running correctly, you can set up the services to see the Chaos Mesh
dashboard and make sure the chaos-dashboard service is available:

$ kubectl get svc -n chaos-testing

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
chaos-daemon ClusterIP None <none> 31767/TCP,31766/TCP
chaos-dashboard NodePort 10.99.137.187 <none> 2333:30029/TCP
chaos-mesh-contr[...] ClusterIP 10.99.118.132 <none> 0081/TCP,10080/TCP,443/TCP

Now that you know the service is running, go ahead and expose it, rename it, and open the
dashboard using minikube service:

$ kubectl expose service chaos-dashboard \
--namespace chaos-testing --type=NodePort \
--target-port=2333 --name=chaos

service/chaos exposed

$ minikube service chaos --namespace chaos-testing
NAMESPACE | NAME | TARGET PORT | URL
chaos-testing | chaos | 2333 | http://192.168.49.2:32151
Opening service chaos-testing/chaos in default browser...

When the browser opens, you'll see a token generator window. Check the box next to Cluster
scoped, and follow the directions on the screen.

Creative Commons Attribution Share-alike 4.0 32

(Jess Cherry, CC BY-SA 4.0)

Then you can log into Chaos Mesh and see the Dashboard.

(Jess Cherry, CC BY-SA 4.0)

Creative Commons Attribution Share-alike 4.0 33

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

You have installed your Chaos Mesh instance and can start working towards chaos testing!

Get meshy in your cluster
Now that everything is up and running, you can set up some new experiments to try. The
documentation offers some predefined experiments, and I'll choose StressChaos from the
options. In this walkthrough, you will create something in a new namespace to stress against
and scale it up so that it can stress against more than one thing.

Create the namespace:

$ kubectl create ns app-demo

namespace/app-demo created

Then create the deployment in your new namespace:

$ kubectl create deployment nginx \
--image=nginx --namespace app-demo

deployment.apps/nginx created

Scale the deployment up to eight pods:

$ kubectl scale deployment/nginx \
--replicas=8 --namespace app-demo

deployment.apps/nginx scaled

Finally, confirm everything is up and working correctly by checking your pods in the
namespace:

$ kubectl get pods -n app-demo
NAME READY STATUS RESTARTS
nginx-6799fc88d8-e8d2e 1/1 Running 0
nginx-6799fc88d8-82p8t 1/1 Running 0
nginx-6799fc88d8-dfrlz 1/1 Running 0
nginx-6799fc88d8-kbf75 1/1 Running 0
nginx-6799fc88d8-m25hs 1/1 Running 0
nginx-6799fc88d8-mg4tb 1/1 Running 0
nginx-6799fc88d8-q9m2m 1/1 Running 0
nginx-6799fc88d8-v7q4d 1/1 Running 0

Creative Commons Attribution Share-alike 4.0 34

https://chaos-mesh.org/docs/chaos_experiments/stresschaos_experiment

Now that you have something to test against, you can begin working on the definition for your
experiment. Start by creating chaos-test.yaml:

$ touch chaos-test.yaml

Next, create the definition for the chaos test. Just copy and paste this experiment definition
into your chaos-test.yaml file:

apiVersion: chaos-mesh.org/v1alpha1
kind: StressChaos
metadata:
 name: burn-cpu
 namespace: chaos-testing
spec:
 mode: one
 selector:
 namespaces:
 - app-demo
 labelSelectors:
 app: "nginx"
 stressors:
 cpu:
 workers: 1
 duration: '30s'
 scheduler:
 cron: '@every 2m'

This test will burn 1 CPU for 30 seconds every 2 minutes on pods in the app-demo
namespace. Finally, apply the YAML file to start the experiment and view what happens in
your dashboard.

Apply the experiment file:

$ kubectl apply -f chaos-test.yaml

stresschaos.chaos-mesh.org/burn-cpu created

Then go to your dashboard and click Experiments to see the stress test running. You can
pause the experiment by pressing the Pause button on the right-hand side of the
experiment.

Click Dashboard to see the state with a count of total experiments, the state graph, and a
timeline of running events or previously run tests. Choose Events to see the timeline and the
experiments below it with details.

Creative Commons Attribution Share-alike 4.0 35

(Jess Cherry, CC BY-SA 4.0)

Congratulations on completing your first test! Now that you have this working, I'll share more
details about what else you can do with your experiments.

But wait, there's more
Other things you can do with this experiment using the command line include:

• Updating the experiment to change how it works
• Pausing the experiment if you need to return the cluster to a steady state
• Resuming the experiment to continue testing
• Deleting the experiment if you no longer need it for testing

Updating the experiment
As an example, update the experiment in your cluster to increase the duration between tests.
Go back to your cluster-test.yaml and edit the scheduler to change 2 minutes to 20
minutes.

Creative Commons Attribution Share-alike 4.0 36

https://creativecommons.org/licenses/by-sa/4.0/

Before:

 scheduler:
 cron: '@every 2m'

After:

 scheduler:
 cron: '@every 20m'

Save and reapply your file; the output should show the new stress test configuration:

$ kubectl apply -f chaos-test.yaml
stresschaos.chaos-mesh.org/burn-cpu configured

If you look in the Dashboard, the experiment should show the new cron configuration.

(Jess Cherry, CC BY-SA 4.0)

Pausing and resuming the experiment
Manually pausing the experiment on the command line will require adding an annotation to
the experiment. Resuming the experiment will require removing the annotation.

To add the annotation, you will need the kind, name, and namespace of the experiment from
your YAML file.

Pause an experiment
You can pause an experiment:

$ kubectl annotate stresschaos burn-cpu experiment.chaos-mesh.org/pause=true \
-n chaos-testing

stresschaos.chaos-mesh.org/burn-cpu annotated

Creative Commons Attribution Share-alike 4.0 37

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://creativecommons.org/licenses/by-sa/4.0/

The web UI shows it is paused.

(Jess Cherry, CC BY-SA 4.0)

Resume an experiment
You need the same information to resume your experiment. However, rather than the word
true, you use a dash to remove the pause.

$ kubectl annotate stresschaos burn-cpu experiment.chaos-mesh.org/pause- \
-n chaos-testing
stresschaos.chaos-mesh.org/burn-cpu annotated

Now you can see the experiment has resumed in the web UI.

(Jess Cherry, CC BY-SA 4.0)

Remove an experiment
Removing an experiment altogether requires a simple delete command with the file name:

$ kubectl delete -f chaos-test.yaml
stresschaos.chaos-mesh.org "burn-cpu" deleted

Once again, you should see the desired result in the web UI.

Creative Commons Attribution Share-alike 4.0 38

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

Many of these tasks were done with the command line, but you can also create your own
experiments using the UI or import experiments you created as YAML files. This helps many
people become more comfortable with creating new experiments. There is also a Download
button for each experiment, so you can see the YAML file you created by clicking a few
buttons.

Final thoughts
Now that you have this new tool, you can get meshy with your environment. Chaos Mesh
allows more user-friendly interaction, which means more people can join the chaos team. I
hope you've learned enough here to expand on your chaos engineering. Happy pod hunting!

Creative Commons Attribution Share-alike 4.0 39

https://creativecommons.org/licenses/by-sa/4.0/

Test arbitrary pod failures on
Kubernetes with kube-monkey

I have covered multiple chaos engineering tools in this series. The first article in this series
explained what chaos engineering is; the second demonstrated how to get your system's
steady state so that you can compare it against a chaos state; the third showed how to use
Litmus to test arbitrary failures and experiments in your Kubernetes cluster; and the fourth
article got into Chaos Mesh, an open source chaos orchestrator with a web user interface.

In this article, I want to talk about arbitrary pod failure. Kube-monkey offers an easy way to
stress-test your systems by scheduling random termination pods in your cluster. This aims to
encourage and validate the development of failure-resilient services. As in the previous
walkthroughs, I’ll use Pop!_OS 20.04, Helm 3, Minikube 1.14.2, and Kubernetes 1.19.

Configure Minikube
If you haven’t already done so, i nstall Minikube in whatever way makes sense for your
environment. If you have enough resources, I recommend giving your virtual machine a bit
more than the default memory and CPU power:

$ minikube config set memory 8192
 These changes take effect upon a minikube delete and then a minikube start❗

$ minikube config set cpus 6
 These changes take effect upon a minikube delete and then a minikube start❗

Then start and check your system's status:

$ minikube start
minikube v1.14.2 on Debian bullseye/sid
minikube 1.19.0 is available! http://github.com/kubernetes/minikube
To disable this notice: 'minikube config set WantUpdateNotification false'
Using the docker driver based on user configuration
Starting control plane node minikube in cluster minikube

Creative Commons Attribution Share-alike 4.0 40

https://minikube.sigs.k8s.io/docs/start/
https://github.com/asobti/kube-monkey

Verifying Kubernetes components...
Done! kubectl is now configured to use "minikube" by default
$ minikube status
minikube
type: Control Plane
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured

Preconfiguring with deployments
Start by adding some small deployments to run chaos against. These deployments will need
some special labels, so you need to create a new Helm chart. The following labels will help
kube-monkey determine what to kill if the app is opted-in to doing chaos and understand
what details are behind the chaos:

• kube-monkey/enabled: This setting opts you in to starting the chaos
• kube-monkey/mtbf: This stands for mean time between failure (in days). For

example, if it's set to 3, the Kubernetes (K8s) app expects to have a pod killed
approximately every third weekday.

• kube-monkey/identifier: This is a unique identifier for the K8s apps; in this example,
it will be "nginx"

• kube-monkey/kill-mode: The kube-monkey's default behavior is to kill only one pod
in the cluster, but you can change it to add more:

• kill-all: Kill every pod, no matter what is happening with a pod
• fixed: Pick a number of pods you want to kill
• fixed-percent: Kill a fixed percent of pods (for example, 50%)

• kube-monkey/kill-value: This is where you can specify a value for kill-mode
• fixed: The number of pods to kill
• random-max-percent: Maximum number (0–100) that kube-monkey can kill
• fixed-percent: Percentage (0–100%) of pods to kill

Now that you have this background info, you can start creating a basic Helm chart.

I named this Helm chart nginx. I'll show only the changes to the Helm chart deployment
labels below. You need to change the deployment YAML file, which is nginx/templates in
this example:

$ /chaos/kube-monkey/helm/nginx/templates$ ls -la

Creative Commons Attribution Share-alike 4.0 41

total 40
drwxr-xr-x 3 jess jess 4096 May 15 14:46 .
drwxr-xr-x 4 jess jess 4096 May 15 14:46 ..
-rw-r--r-- 1 jess jess 1826 May 15 14:46 deployment.yaml
-rw-r--r-- 1 jess jess 1762 May 15 14:46 _helpers.tpl
-rw-r--r-- 1 jess jess 910 May 15 14:46 hpa.yaml
-rw-r--r-- 1 jess jess 1048 May 15 14:46 ingress.yaml
-rw-r--r-- 1 jess jess 1735 May 15 14:46 NOTES.txt
-rw-r--r-- 1 jess jess 316 May 15 14:46 serviceaccount.yaml
-rw-r--r-- 1 jess jess 355 May 15 14:46 service.yaml
drwxr-xr-x 2 jess jess 4096 May 15 14:46 tests

In your deployment.yaml file, find this section:

 template:
 metadata:
 {{- with .Values.podAnnotations }}
 annotations:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 labels:
 {{- include "nginx.selectorLabels" . | nindent 8 }}

And make these changes:

 template:
 metadata:
 {{- with .Values.podAnnotations }}
 annotations:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 labels:
 {{- include "nginx.selectorLabels" . | nindent 8 }}
 kube-monkey/enabled: enabled
 kube-monkey/identifier: monkey-victim
 kube-monkey/mtbf: '2'
 kube-monkey/kill-mode: "fixed"
 kube-monkey/kill-value: '1'

Move back one directory and find the values file:

$ /chaos/kube-monkey/helm/nginx/templates$ cd ../
$ /chaos/kube-monkey/helm/nginx$ ls
charts Chart.yaml templates values.yaml

You need to change one line in the values file, from:

Creative Commons Attribution Share-alike 4.0 42

replicaCount: 1

to:

replicaCount: 8

This gives you eight different pods to test chaos against.

Move back one more directory and install the new Helm chart:

$ /chaos/kube-monkey/helm/nginx$ cd ../
$ /chaos/kube-monkey/helm$ helm install nginxtest nginx
NAME: nginxtest
LAST DEPLOYED: Sat May 15 14:53:47 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES: Get the application URL by running these commands:

$ export POD_NAME=$(kubectl get pods --namespace default -l
"app.kubernetes.io/name=nginx,app.kubernetes.io/instance=nginxtest" -o
jsonpath="{.items[0].metadata.name}")
$ export CONTAINER_PORT=$(kubectl get pod --namespace default $POD_NAME -o
jsonpath="{.spec.containers[0].ports[0].containerPort}")
$ echo "Visit http://127.0.0.1:8080 to use your application"
$ kubectl --namespace default port-forward $POD_NAME 8080:$CONTAINER_PORT

Then check the labels in your Nginx pods:

$ /chaos/kube-monkey/helm$ kubectl get pods -n default
NAME READY STATUS RESTARTS
nginxtest-8f967857-88zv7 1/1 Running 0
nginxtest-8f967857-8qb95 1/1 Running 0
nginxtest-8f967857-dlng7 1/1 Running 0
nginxtest-8f967857-h7mmc 1/1 Running 0
nginxtest-8f967857-pdzpq 1/1 Running 0
nginxtest-8f967857-rdpnb 1/1 Running 0
nginxtest-8f967857-rqv2w 1/1 Running 0
nginxtest-8f967857-tr2cn 1/1 Running 0

Chose the first pod to describe and confirm the labels are in place:

$ kubectl describe pod nginxtest-8f967857-88zv7 -n default
Name: nginxtest-8f967857-88zv7
Namespace: default
Priority: 0

Creative Commons Attribution Share-alike 4.0 43

Node: minikube/192.168.49.2
Start Time: Sat, 15 May 2021 15:11:37 -0400
Labels: app.kubernetes.io/instance=nginxtest
 app.kubernetes.io/name=nginx
 kube-monkey/enabled=enabled
 kube-monkey/identifier=monkey-victim
 kube-monkey/kill-mode=fixed
 kube-monkey/kill-value=1
 kube-monkey/mtbf=2
 pod-template-hash=8f967857

Configure and install kube-monkey
To install kube-monkey using Helm, you first need to run git clone on the kube-monkey
repository:

$ /chaos$ git clone https://github.com/asobti/kube-monkey
Cloning into 'kube-monkey'...
remote: Enumerating objects: 14641, done.
remote: Counting objects: 100% (47/47), done.
remote: Compressing objects: 100% (36/36), done.
remote: Total 14641 (delta 18), reused 22 (delta 8), pack-reused 14594
Receiving objects: 100% (14641/14641), 30.56 MiB | 39.31 MiB/s, done.
Resolving deltas: 100% (6502/6502), done.

Change to the kube-monkey/helm directory:

$ cd kube-monkey/helm/

Then go into the Helm chart and find the values.yaml file:

$ cd kubemonkey/
$ ls
Chart.yaml README.md templates values.yaml

Below, I list just the sections of the values.yaml file you need to change. They disable dry-
run mode by changing it in the config section to false, then add the default namespace to
the whitelist so that it can kill the pods you deployed. You must keep the
blacklistedNamespaces value or you will cause severe damage to your system.

Change this:

config:
 dryRun: true

Creative Commons Attribution Share-alike 4.0 44

https://github.com/asobti/kube-monkey
https://github.com/asobti/kube-monkey

 runHour: 8
 startHour: 10
 endHour: 16
 blacklistedNamespaces:
 - kube-system
 whitelistedNamespaces: []

To this:

config:
 dryRun: false
 runHour: 8
 startHour: 10
 endHour: 16
 blacklistedNamespaces:
 - kube-system
 whitelistedNamespaces: ["default"]

In the debug section, set enabled and schedule_immediate_kill to true. This will
show the pods being killed.

Change this:

 debug:
 enabled: false
 schedule_immediate_kill: false

To this:

 debug:
 enabled: true
 schedule_immediate_kill: true

Run a helm install:

$ helm install chaos kubemonkey
NAME: chaos
LAST DEPLOYED: Sat May 15 13:51:59 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
1. Wait until the application is rolled out:
$ kubectl -n default rollout status deployment chaos-kube-monkey
2. Check the logs:

Creative Commons Attribution Share-alike 4.0 45

$ kubectl logs -f deployment.apps/chaos-kube-monkey -n default

Check the kube-monkey logs and see that the pods are being terminated:

$ /chaos/kube-monkey/helm$ kubectl logs \
-f deployment.apps/chaos-kube-monkey -n default
********** Today's schedule **********
k8 Api Kind Kind Name Termination Time
v1.Deployment nginxtest 05/15/2021 15:15:22 -0400 EDT
********** End of schedule **********

I0515 19:15:22.343202 1 kubemonkey.go:70] Termination successfully executed for
v1.Deployment nginxtest
I0515 19:15:22.343216 1 kubemonkey.go:73] 0 scheduled terminations left.
I0515 19:15:22.343220 1 kubemonkey.go:76] All terminations done.
I0515 19:15:22.343278 1 kubemonkey.go:19] Debug mode detected!
I0515 19:15:22.343283 1 kubemonkey.go:20] Generating next schedule in 30 sec

You can also use K9s and watch the pods die.

(Jess Cherry, CC BY-SA 4.0)

Congratulations! You now have a running chaos test with arbitrary failures. Anytime you want,
you can change your applications to test at a certain day of the week and time of day.

Creative Commons Attribution Share-alike 4.0 46

https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/article/20/5/kubernetes-administration

Final thoughts
While kube-monkey is a great chaos engineering tool, it does require heavy configurations.
Therefore, it isn't the best starter chaos engineering tool for someone new to Kubernetes.
Another drawback is you have to edit your application's Helm chart for chaos testing to run.

This tool would be best positioned in a staging environment to watch how applications
respond to arbitrary failure regularly. This gives you a long-term way to keep track of unsteady
states using cluster monitoring tools. It also keeps notes that you can use for recovery of your
internal applications in production.

Creative Commons Attribution Share-alike 4.0 47

Play Doom on Kubernetes

Do you ever feel nostalgic for Doom and other blocky video games, the ones that didn't
require much more than a mouse and the hope that you could survive on a LAN with your
friends? You know what I'm talking about; the days when your weekends were consumed with
figuring out how you could travel with your desktop and how many Mountain Dews you could
fit in your cargo pants pockets? If this memory puts a warm feeling in your heart, well, this
article is for you.

Get ready to play Doom again, only this time you'll be playing for a legitimate work reason:
doing chaos engineering. I'll be using my fork of Kube DOOM (with a new Helm chart because
that's how I sometimes spend my weekends). I also have a pull request with the original Kube
DOOM creator that I'm waiting to hear about.

The first article in this series explained what chaos engineering is, and the second
demonstrated how to get your system's steady state so that you can compare it against a
chaos state. In the next few articles, I introduced some chaos engineering tools you can use:
Litmus for testing arbitrary failures and experiments in your Kubernetes cluster; Chaos Mesh,
an open source chaos orchestrator with a web user interface; and Kube-monkey for stress-
testing your systems by scheduling random termination pods in your cluster.

In this article, I'll use Pop!_OS 20.04, Helm 3, Minikube 1.14.2, a VNC viewer, and Kubernetes
1.19.

Preinstall pods with Helm
Before moving forward, you'll need to deploy some pods into your cluster. To do this, I
generated a simple Helm chart and changed the replicas in my values file from 1 to 8.

If you need to generate a Helm chart, you can read my article on creating a Helm chart for
guidance. I created a Helm chart named nginx and created a namespace to install my chart
into using the commands below.

Creative Commons Attribution Share-alike 4.0 48

https://opensource.com/article/20/5/helm-charts
https://github.com/storax/kubedoom
https://github.com/storax/kubedoom
https://github.com/Alynder/kubedoom

Create a namespace:

$ kubectl create ns nginx

Install the chart in your new namespace with a name:

$ helm install chaos-pods nginx -n nginx
NAME: chaos-pods
LAST DEPLOYED: Sun May 23 10:15:52 2021
NAMESPACE: nginx
STATUS: deployed
REVISION: 1
NOTES:
1. Get the application URL by running these commands:

$ export POD_NAME=$(kubectl get pods --namespace nginx -l
"app.kubernetes.io/name=nginx,app.kubernetes.io/instance=chaos-pods" -o
jsonpath="{.items[0].metadata.name}")

$ export CONTAINER_PORT=$(kubectl get pod --namespace nginx $POD_NAME -o
jsonpath="{.spec.containers[0].ports[0].containerPort}")

$ echo "Visit http://127.0.0.1:8080 to use your application"

$ kubectl --namespace nginx port-forward $POD_NAME 8080:$CONTAINER_PORT

Install Kube DOOM
You can use any Virtual Network Computer (VNC) viewer you want; I installed TigerVNC on
my Linux box. There are several ways you can set up Kube DOOM. Before I generated my
Helm chart, you could set it up with kind or use it locally with Docker, and the README
contains instructions for those uses.

Get started with a git clone:

$ git clone git@github.com:Alynder/kubedoom.git
Cloning into 'kubedoom'...

Then change directory into the kubedoom/helm folder:

$ cd kubedoom/helm/

Since the base values file is already set up correctly, you just need to run a single install
command:

Creative Commons Attribution Share-alike 4.0 49

https://github.com/Alynder/kubedoom/blob/master/README.md
https://kind.sigs.k8s.io/
https://tigervnc.org/
https://en.wikipedia.org/wiki/Virtual_Network_Computing

$ helm install kubedoom kubedoom/ -n kubedoom
NAME: kubedoom
LAST DEPLOYED: Mon May 31 11:16:58 2021
NAMESPACE: kubedoom
STATUS: deployed
REVISION: 1
NOTES: Get the application URL by running these commands:

$ export NODE_PORT=$(kubectl get --namespace kubedoom -o
jsonpath="{.spec.ports[0].nodePort}" services kubedoom-kubedoom-chart)

$ export NODE_IP=$(kubectl get nodes --namespace kubedoom -o
jsonpath="{.items[0].status.addresses[0].address}")

$ echo http://$NODE_IP:$NODE_PORT

Everything should be installed, set up, and ready to go.

Play with Kube DOOM
Now you just need to get in there, run a few commands, and start playing your new chaos
video game. The first command is a port forward, followed by the VNC viewer connection
command. The VNC viewer connection needs a password, which is idbehold.

Find your pod for the port forward:

$ kubectl get pods -n kubedoom
NAME READY STATUS RESTARTS
kubedoom-kubedoom-chart-676[...] 1/1 Running 0

Run the port-forward command using your pod name:

$ kubectl port-forward kubedoom-kubedoom-chart-676bcc5c9c-xkwpp \
5900:5900 -n kubedoom

Forwarding from 127.0.0.1:5900 -> 5900
Forwarding from [::1]:5900 -> 5900

Everything is ready to play, so you just need to run the VNC viewer command:

$ vncviewer viewer localhost:5900
TigerVNC Viewer 64-bit v1.10.1
 CConn: Connected to host localhost port 5900

Creative Commons Attribution Share-alike 4.0 50

Next, you'll see the password request, so enter it (idbehold, as given above).

(Jess Cherry, CC BY-SA 4.0)

Once you’re logged in, you should be able to walk around and see your enemies with pod
names.

(Jess Cherry, CC BY-SA 4.0)

Creative Commons Attribution Share-alike 4.0 51

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

I'm terrible at this game, so I use some cheats to have a little more fun:

• Type idspispopd to walk straight through a wall to get to your army of pods.
• Can't handle the gun? That's cool; I'm bad at it, too. If you type idkfa and press the

number 5, you'll get a better weapon.

This is what it looks like when you kill something (I used k9s for this view).

(Jess Cherry, CC BY-SA 4.0)

Final notes
Because this application requires a cluster-admin role, you have to really pay attention to the
names of the pods—you might run into a kube-system pod, and you'd better run away. If you
kill one of those pods, you will kill an important part of the system.

I love this application because it's the quickest gamified way to do chaos engineering. It did
remind me of how bad I was at this video game, but it was hilarious to try it. Happy hunting!

Creative Commons Attribution Share-alike 4.0 52

https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.com/article/20/5/kubernetes-administration

What happens when you terminate
Kubernetes containers on
purpose?

In this final article, I combine all the lessons you’ve learnt so far. Along with Grafana and
Prometheus for monitoring for a steady state on your local cluster, I use Chaos Mesh and a
small deployment and two experiments to see the difference between steady and not steady.

Preinstall pods with Helm
Before moving forward, you'll need to deploy some pods into your cluster. To do this, I
generated a simple Helm chart and changed the replicas in my values file from 1 to 8.

If you need to generate a Helm chart, you can read the appendix article on creating a Helm
chart for guidance. I created a Helm chart named nginx and created a namespace to install
my chart into using the commands below.

Create a namespace:

$ kubectl create ns nginx

Install the chart in your new namespace with a name:

$ helm install chaos-pods nginx -n nginx
NAME: chaos-pods
LAST DEPLOYED: Sun May 23 10:15:52 2021
NAMESPACE: nginx
STATUS: deployed
NOTES: Get the application URL by running these commands:

$ export POD_NAME=$(kubectl get pods --namespace nginx \
-l "app.kubernetes.io/name=nginx,app.kubernetes.io/instance=chaos-pods" \
-o jsonpath="{.items[0].metadata.name}")

Creative Commons Attribution Share-alike 4.0 53

$ export CONTAINER_PORT=$(kubectl get pod --namespace nginx \
$POD_NAME -o jsonpath="{.spec.containers[0].ports[0].containerPort}")

$ echo "Visit http://127.0.0.1:8080 to use your application"
$ kubectl --namespace nginx port-forward $POD_NAME 8080:$CONTAINER_PORT

Monitoring and marinating
Next, install and set up Prometheus and Grafana following the steps in the previous articles in
this series. However, you must make make the following changes in the installation:

$ kubectl create ns monitoring
$ helm install prometheus prometheus-community/prometheus -n monitoring
$ helm install grafana bitnami/grafana -n monitoring

Now that everything is installed in separate namespaces, set up your dashboards and let
Grafana marinate for a couple of hours to catch a nice steady state. If you're in a staging or
dev cluster at work, it would be even better to let everything sit for a week or so.

For this walkthrough, I will use the K8 Cluster Detail Dashboard (dashboard 10856), which
provides various drop-downs with details about your cluster.

(Jess Cherry, CC BY-SA 4.0)

Creative Commons Attribution Share-alike 4.0 54

https://creativecommons.org/licenses/by-sa/4.0/
https://grafana.com/grafana/dashboards/10856

Test #1: Container killing with Grafana and Chaos Mesh
Install and configure Chaos Mesh using the steps in my previous article. Once that is set up,
you can add some new experiments to test and observe with Grafana.

Start by setting up an experiment to kill containers. First, look at your steady state.

(Jess Cherry, CC BY-SA 4.0)

Next, make a kill-container experiment pointed at your Nginx containers. I created an
experiments directory and then the container-kill.yaml file:

$ mkdir experiments
$ cd experiments/
$ touch container-kill.yaml

The file looks like this:

apiVersion: chaos-mesh.org/v1alpha1
kind: PodChaos
metadata:
 name: container-kill-example
 namespace: nginx
spec:
 action: container-kill

Creative Commons Attribution Share-alike 4.0 55

https://creativecommons.org/licenses/by-sa/4.0/

 mode: one
 containerName: 'nginx'
 selector:
 labelSelectors:
 'app.kubernetes.io/instance': 'nginx'
 scheduler:
 cron: '@every 60s'

Once it starts, this experiment kills an nginx container every minute.

Apply your file:

$ kubectl apply -f container-kill.yaml
podchaos.chaos-mesh.org/container-kill-example created

Now that the experiment is in place, watch it running in Chaos Mesh.

(Jess Cherry, CC BY-SA 4.0)

Look into Grafana and see a notable change in the state of the pods and containers.

Creative Commons Attribution Share-alike 4.0 56

https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

If you change the kill time and reapply the experiment, you will see even more going on in
Grafana. For example, change @every 60s to @every 30s and reapply the file:

$ kubectl apply -f container-kill.yaml
podchaos.chaos-mesh.org/container-kill-example configured

You can see the disruption in Grafana with two containers sitting in waiting status.

Creative Commons Attribution Share-alike 4.0 57

https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

Now that you know how the containers reacted, go into the Chaos Mesh user interface and
pause the experiment.

Test #2: Networking with Grafana and Chaos Mesh
The next test works with network delays to see what happens if there are issues between
pods. First, grab your steady state from Grafana.

Creative Commons Attribution Share-alike 4.0 58

https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

Create a networkdelay.yaml file for your experiment:

$ touch networkdelay.yaml

Then add some network delay details. This example runs a delay in the nginx namespace
against your namespace instances. The packet-sending delay will be 90ms, the jitter will be
90ms, and the jitter correlation will be 25%:

apiVersion: chaos-mesh.org/v1alpha1
kind: NetworkChaos
metadata:
 name: network-delay-example
 namespace: nginx
spec:
 action: delay
 mode: one
 selector:
 labelSelectors:
 'app.kubernetes.io/instance': 'nginx'
 delay:
 latency: "90ms"
 correlation: "25"
 jitter: "90ms"

Creative Commons Attribution Share-alike 4.0 59

https://creativecommons.org/licenses/by-sa/4.0/

 duration: "45s"
 scheduler:
 cron: "@every 1s"

Save and apply the file:

$ kubectl apply -f networkdelay.yaml
networkchaos.chaos-mesh.org/network-delay-example created

It should show up in Chaos Mesh as an experiment.

(Jess Cherry, CC BY-SA 4.0)

Now that it is running pretty extensively using your configuration, you should see an
interesting, noticeable change in Grafana.

Creative Commons Attribution Share-alike 4.0 60

https://creativecommons.org/licenses/by-sa/4.0/

(Jess Cherry, CC BY-SA 4.0)

In the graphs, you can see the pods are experiencing a delay.

Congratulations! You have a more detailed way to keep track of and test networking issues.

Chaos engineering final thoughts
Chaos engineering has a lot of evolving yet to do, but the more people involved, the better
the testing and tools will get. Chaos engineering can be fun and easy to set up, which means
everyone—from your dev team to your administration—can do it. This will make your
infrastructure and the apps it hosts more dependable.

Creative Commons Attribution Share-alike 4.0 61

https://creativecommons.org/licenses/by-sa/4.0/

Appendix

Creative Commons Attribution Share-alike 4.0 62

How to make a Helm chart in 10
minutes

A good amount of my day-to-day involves creating, modifying, and deploying Helm charts to
manage the deployment of applications. Helm is an application package manager for
Kubernetes, which coordinates the download, installation, and deployment of apps. Helm
charts are the way we can define an application as a collection of related Kubernetes
resources.

So why would anyone use Helm? Helm makes managing the deployment of applications
easier inside Kubernetes through a templated approach. All Helm charts follow the same
structure while still having a structure flexible enough to represent any type of application you
could run on Kubernetes. Helm also supports versioning since deployment needs are
guaranteed to change with time. The alternative is to use multiple configuration files that you
manually apply to your Kubernetes cluster to bring an application up. If we've learned anything
from seeing infrastructure as code, it's that manual processes inevitably lead to errors. Helm
charts give us a chance to apply that same lesson to the world of Kubernetes.

In this example, we'll be walking through using Helm with minikube, a single-node testing
environment for Kubernetes. We will make a small Nginx web server application. For this
example, I have minikube version 1.9.2 and Helm version 3.0.0 installed on my Linux laptop. To
get set up, do the following.

• Download and configure minikube by following the excellent documentation here.
• Download and configure Helm using your favorite package manager listed here or

manually from the releases.

Create a Helm chart
Start by confirming we have the prerequisites installed:

Creative Commons Attribution Share-alike 4.0 63

https://github.com/helm/helm/releases
https://github.com/helm/helm#install
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://opensource.com/article/19/7/infrastructure-code
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/

$ helm version
version.BuildInfo{Version:"v3.6.3"
$ minikube status ## if it shows Stopped, run `minikube start`
host: Running
kubelet: Running
apiserver: Running
kubeconfig: Configured

Starting a new Helm chart requires one simple command:

$ helm create mychartname

For the purposes of this tutorial, name the chart buildachart:

$ helm create buildachart
Creating buildachart
$ ls buildachart/
Chart.yaml charts/ templates/ values.yaml

Examine the chart's structure
Now that you have created the chart, take a look at its structure to see what's inside. The first
two files you see—Chart.yaml and values.yaml—define what the chart is and what values will
be in it at deployment.

Look at Chart.yaml, and you can see the outline of a Helm chart's structure:

apiVersion: v2
name: buildachart
description: A Helm chart for Kubernetes

A chart can be either an 'application' or a 'library' chart
type: application

Chart version
version: 0.1.0

Application version
appVersion: 1.16.0

The first part includes the API version that the chart is using (this is required), the name of the
chart, and a description of the chart. The next section describes the type of chart (an

Creative Commons Attribution Share-alike 4.0 64

application by default), the version of the chart you will deploy, and the application version
(which should be incremented as you make changes).

The most important part of the chart is the template directory. It holds all the configurations
for your application that will be deployed into the cluster. As you can see below, this
application has a basic deployment, ingress, service account, and service. This directory also
includes a test directory, which includes a test for a connection into the app. Each of these
application features has its own template files under templates/:

$ ls templates/
NOTES.txt _ helpers.tpl deployment.yaml
ingress.yaml service.yaml serviceaccount.yaml tests/

There is another directory, called charts, which is empty. It allows you to add dependent
charts that are needed to deploy your application. Some Helm charts for applications have up
to four extra charts that need to be deployed with the main application. When this happens,
the values file is updated with the values for each chart so that the applications will be
configured and deployed at the same time. This is a far more advanced configuration (which I
will not cover in this introductory article), so leave the charts/ folder empty.

Understand and edit values
Template files are set up with formatting that collects deployment information from the
values.yaml file. Therefore, to customize your Helm chart, you need to edit the values file. By
default, the values.yaml file looks like:

Default values for buildachart.
This is a YAML-formatted file.
Declare variables to be passed into your templates.

replicaCount: 1
image:
 repository: nginx
 pullPolicy: IfNotPresent
imagePullSecrets: []
nameOverride: ""
fullnameOverride: ""
serviceAccount:
 # Specifies whether a service account should be created
 create: true
 # Annotations to add to the service account
 annotations: {}

Creative Commons Attribution Share-alike 4.0 65

 name:
podSecurityContext: {}
 # fsGroup: 2000
securityContext: {}
 # capabilities:
 # drop:
 # - ALL
 # readOnlyRootFilesystem: true
 # runAsNonRoot: true
 # runAsUser: 1000
service:
 type: ClusterIP
 port: 80
ingress:
 enabled: false
 annotations: {}
 # kubernetes.io/ingress.class: nginx
 # kubernetes.io/tls-acme: "true"
 hosts:
 - host: chart-example.local
 paths: []
 tls: []
 # - secretName: chart-example-tls
 # hosts:
 # - chart-example.local
resources: {}
 # limits:
 # cpu: 100m
 # memory: 128Mi
 # requests:
 # cpu: 100m
 # memory: 128Mi
nodeSelector: {}
tolerations: []
affinity: {}

Basic configurations
Beginning at the top, you can see that the replicaCount is automatically set to 1, which
means that only one pod will come up. You only need one pod for this example, but you can
see how easy it is to tell Kubernetes to run multiple pods for redundancy.

The image section has two things you need to look at: the repository where you are pulling
your image and the pullPolicy. The pullPolicy is set to IfNotPresent; which means that the
image will download a new version of the image if one does not already exist in the cluster.
There are two other options for this: Always, which means it will pull the image on every

Creative Commons Attribution Share-alike 4.0 66

deployment or restart (I always suggest this in case of image failure), and Latest, which will
always pull the most up-to-date version of the image available. Latest can be useful if you
trust your image repository to be compatible with your deployment environment, but that's
not always the case.

Change the value to Always.

Before:

image:
 repository: nginx
 pullPolicy: IfNotPresent

After:

image:
 repository: nginx
 pullPolicy: Always

Naming and secrets
Next, take a look at the overrides in the chart. The first override is imagePullSecrets, which
is a setting to pull a secret, such as a password or an API key you've generated as credentials
for a private registry. Next are nameOverride and fullnameOverride. From the moment
you ran helm create, its name (buildachart) was added to a number of configuration files—
from the YAML ones above to the templates/helper.tpl file. If you need to rename a chart
after you create it, this section is the best place to do it, so you don't miss any configuration
files.

Change the chart's name using overrides.

Before:

imagePullSecrets: []
nameOverride: ""
fullnameOverride: ""

After:

imagePullSecrets: []
nameOverride: "cherry-awesome-app"
fullnameOverride: "cherry-chart"

Creative Commons Attribution Share-alike 4.0 67

Accounts
Service accounts provide a user identity to run in the pod inside the cluster. If it's left blank,
the name will be generated based on the full name using the helpers.tpl file. I recommend
always having a service account set up so that the application will be directly associated with a
user that is controlled in the chart.

As an administrator, if you use the default service accounts, you will have either too few
permissions or too many permissions, so change this.

Before:

serviceAccount:
 # Specifies whether a service account should be created
 create: true
 # Annotations to add to the service account
 annotations: {}
 # The name of the service account to use.
 # If not set and create is true, the fullname is used
 Name:

After:

serviceAccount:
 # Specifies whether a service account should be created
 create: true
 # Annotations to add to the service account
 annotations: {}
 # The name of the service account to use.
 # If not set and create is true, the fullname is used
 Name: cherrybomb

Security
You can configure pod security to set limits on what type of filesystem group to use or which
user can and cannot be used. Understanding these options is important to securing a
Kubernetes pod, but for this example, I will leave this alone.

podSecurityContext: {}
 # fsGroup: 2000
securityContext: {}
 # capabilities:
 # drop:
 # - ALL
 # readOnlyRootFilesystem: true

Creative Commons Attribution Share-alike 4.0 68

 # runAsNonRoot: true
 # runAsUser: 1000

Networking
There are two different types of networking options in this chart. One uses a local service
network with a ClusterIP address, which exposes the service on a cluster-internal IP.
Choosing this value makes the service associated with your application reachable only from
within the cluster (and through ingress, which is set to false by default). The other
networking option is NodePort, which exposes the service on each Kubernetes node's IP
address on a statically assigned port. This option is recommended for running minikube, so
use it for this how-to.

Before:

service:
 type: ClusterIP
 port: 80
ingress:
 enabled: false

After:

service:
 type: NodePort
 port: 80
ingress:
 enabled: false

Resources
Helm allows you to explicitly allocate hardware resources. You can configure the maximum
amount of resources a Helm chart can request and the highest limits it can receive. Since I'm
using Minikube on a laptop, I'll set a few limits by removing the curly braces and the hashes to
convert the comments into commands.

Before:

resources: {}
 # limits:
 # cpu: 100m
 # memory: 128Mi
 # requests:

Creative Commons Attribution Share-alike 4.0 69

https://kubernetes.io/docs/setup/learning-environment/minikube/

 # cpu: 100m
 # memory: 128Mi

After:

resources:
 limits:
 cpu: 100m
 memory: 128Mi
 requests:
 cpu: 100m
 memory: 128Mi

Tolerations, node selectors, and affinities
These last three values are based on node configurations. Although I cannot use any of them
in my local configuration, I'll still explain their purpose.

nodeSelector comes in handy when you want to assign part of your application to specific
nodes in your Kubernetes cluster. If you have infrastructure-specific applications, you set the
node selector name and match that name in the Helm chart. Then, when the application is
deployed, it will be associated with the node that matches the selector.

Tolerations, tainting, and affinities work together to ensure that pods run on separate
nodes. Node affinity is a property of pods that attracts them to a set of nodes (either as a
preference or a hard requirement). Taints are the opposite—they allow a node to repel a set of
pods.

In practice, if a node is tainted, it means that it is not working properly or may not have
enough resources to hold the application deployment. Tolerations are set up as a key/value
pair watched by the scheduler to confirm a node will work with a deployment.

Node affinity is conceptually similar to nodeSelector: it allows you to constrain which nodes
your pod is eligible to be scheduled based on labels on the node. However, the labels differ
because they match rules that apply to scheduling.

nodeSelector: {}
tolerations: []
affinity: {}

Creative Commons Attribution Share-alike 4.0 70

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#node-affinity-beta-feature

Deploy ahoy!
Now that you've made the necessary modifications to create a Helm chart, you can deploy it
using a Helm command, add a name point to the chart, add a values file, and send it to a
namespace:

$ helm install my-cherry-chart buildachart/ --values buildachart/values.yaml
Release “my-cherry-chart” has been upgraded. Happy Helming!

The command's output will give you the next steps to connect to the application, including
setting up port forwarding so you can reach the application from your localhost. To follow
those instructions and connect to an Nginx load balancer:

$ export POD_NAME=$(kubectl get pods -l \
"app.kubernetes.io/name=buildachart,app.kubernetes.io/instance=my-cherry-chart" \
-o jsonpath="{.items[0].metadata.name}")

$ echo "Visit http://127.0.0.1:8080 to use your application"
Visit http://127.0.0.1:8080 to use your application

$ kubectl port-forward $POD_NAME 8080:80
Forwarding from 127.0.0.1:8080 -> 80
Forwarding from [::1]:8080 -> 80

View the deployed application
To view your application, open your web browser:

Creative Commons Attribution Share-alike 4.0 71

(Jess Cherry, CC BY-SA 4.0)

Congratulations! You've deployed an Nginx web server by using a Helm chart!

There is a lot to learn as you explore what Helm charts can do. If you want to double-check
your work, visit my example repository on GitHub.

Creative Commons Attribution Share-alike 4.0 72

https://github.com/Alynder/build_a_chart
https://creativecommons.org/licenses/by-sa/4.0/

	by Jessica Cherry
	We are Opensource.com
	Jessica Cherry
	Get started with Kubernetes using chaos engineering
	How do I get started with chaos engineering?
	What do you do in chaos engineering?
	What do I need for chaos engineering?
	Go forth and destroy

	Start monitoring your Kubernetes cluster with Prometheus and Grafana
	Configure Minikube
	Install Prometheus
	Install Grafana
	Configure Grafana with Prometheus
	Import more monitoring dashboards
	Final thoughts

	Test Kubernetes cluster failures and experiments in your terminal
	Configure Minikube
	Install Litmus
	Verify the installation
	Run chaos experiments
	Prep for destruction
	Add new experiments for causing chaos
	Run the experiments
	Final thoughts

	Test your Kubernetes experiments with an open source web interface
	Configure Minikube
	Install Chaos Mesh
	Get meshy in your cluster
	But wait, there's more
	Updating the experiment
	Pausing and resuming the experiment

	Pause an experiment
	Resume an experiment
	Remove an experiment
	Final thoughts

	Test arbitrary pod failures on Kubernetes with kube-monkey
	Configure Minikube
	Preconfiguring with deployments
	Configure and install kube-monkey
	Final thoughts

	Play Doom on Kubernetes
	Preinstall pods with Helm
	Install Kube DOOM
	Play with Kube DOOM
	Final notes

	What happens when you terminate Kubernetes containers on purpose?
	Preinstall pods with Helm
	Monitoring and marinating
	Test #1: Container killing with Grafana and Chaos Mesh
	Test #2: Networking with Grafana and Chaos Mesh
	Chaos engineering final thoughts

	Appendix
	How to make a Helm chart in 10 minutes
	Create a Helm chart
	Examine the chart's structure
	Understand and edit values
	Basic configurations
	Naming and secrets
	Accounts
	Security
	Networking
	Resources
	Tolerations, node selectors, and affinities

	Deploy ahoy!
	View the deployed application

